
MATLAB COM Builder
The Language of Technical Computing

Computation

Visualization

Programming

User’s Guide

Version 1

How to Contact The MathWorks:

www.mathworks.com Web
comp.soft-sys.matlab Newsgroup

support@mathworks.com Technical support
suggest@mathworks.com Product enhancement suggestions
bugs@mathworks.com Bug reports
doc@mathworks.com Documentation error reports
service@mathworks.com Order status, license renewals, passcodes
info@mathworks.com Sales, pricing, and general information

508-647-7000 Phone

508-647-7001 Fax

The MathWorks, Inc. Mail
3 Apple Hill Drive
Natick, MA 01760-2098

For contact information about worldwide offices, see the MathWorks Web site.

MATLAB COM Builder User’s Guide
 COPYRIGHT 2002 by The MathWorks, Inc.
The software described in this document is furnished under a license agreement. The software may be used
or copied only under the terms of the license agreement. No part of this manual may be photocopied or repro-
duced in any form without prior written consent from The MathWorks, Inc.

FEDERAL ACQUISITION: This provision applies to all acquisitions of the Program and Documentation by
or for the federal government of the United States. By accepting delivery of the Program, the government
hereby agrees that this software qualifies as "commercial" computer software within the meaning of FAR
Part 12.212, DFARS Part 227.7202-1, DFARS Part 227.7202-3, DFARS Part 252.227-7013, and DFARS Part
252.227-7014. The terms and conditions of The MathWorks, Inc. Software License Agreement shall pertain
to the government’s use and disclosure of the Program and Documentation, and shall supersede any
conflicting contractual terms or conditions. If this license fails to meet the government’s minimum needs or
is inconsistent in any respect with federal procurement law, the government agrees to return the Program
and Documentation, unused, to MathWorks.

MATLAB, Simulink, Stateflow, Handle Graphics, and Real-Time Workshop are registered trademarks, and
TargetBox is a trademark of The MathWorks, Inc.

Other product or brand names are trademarks or registered trademarks of their respective holders.

Printing History: July 2002 Online only New for Version 1.0 (Release 13)

i

Contents

Preface

What Is MATLAB COM Builder? . viii

Required Background . ix

Requirements for MATLAB COM Builder x
System Requirements . x
Compiler Requirements . x
Limitations and Restrictions . x

Related Products . xi

Typographical Conventions . xii

1
Overview

Building a Deployable Application . 1-2
Elements of a COM Builder Project . 1-2
Creating a Project . 1-3
Managing M-Files and MEX-Files . 1-5
Building a Project . 1-7
Packaging and Distributing the Component 1-7

ii Contents

2
Graphical User Interface

Graphical User Interface Menus . 2-2
File Menu . 2-2
Project Menu . 2-3
Build Menu . 2-4
Component Menu . 2-4
Help Menu . 2-4

Project Settings . 2-5

Component Information . 2-7

3
Programming with COM Builder Components

Overview . 3-2

Adding Class Properties to COM Builder Objects 3-3

Adding Events to COM Builder Objects 3-6

Creating an Instance of a Class . 3-10
CreateObject Function . 3-10
Visual Basic New Operator . 3-10

Calling the Methods of a Class Instance 3-13

Processing varargin and varargout Arguments 3-15

Handling Errors During a Method Call 3-17

Modifying Flags . 3-18
Array Formatting Flags . 3-18
Data Conversion Flags . 3-20

iii

4
Usage Examples

Magic Square Example . 4-2
Creating the M-file . 4-2
Creating the Project . 4-2
Building the Project . 4-5
Creating the Visual Basic Project . 4-5
Creating the User Interface . 4-6
Creating the Executable . 4-9
Testing the Application . 4-10
Packaging the Component . 4-10

Spectral Analysis Example . 4-11
Building the Component . 4-11
Integrating the Component with
Visual Basic for Applications . 4-13
Creating The Visual Basic Form . 4-15
Adding The Spectral Analysis Menu Item to Excel 4-22
Saving the Add-in . 4-23
Testing The Add-in . 4-24
Package the Component . 4-27

5
Function Reference

A
Producing a COM Object from MATLAB

Capabilities . A-2

Calling Conventions . A-7
Producing a COM Class . A-7
IDL Mapping . A-8
Visual Basic Mapping . A-9

iv Contents

B
Data Conversion

Data Conversion Rules . B-2
Array Formatting Flags . B-12
Data Conversion Flags . B-14

C
Registration and Versioning

Overview . C-2

Component Registration . C-3
Self-Registering Components . C-3
Globally Unique Identifiers . C-3

Versioning . C-5

Obtaining Registry Information . C-6

D
Utility Library

Introduction . D-2

Utility Library Classes . D-3
Class MWUtil . D-3
Class MWFlags . D-8
Class MWStruct . D-14
Class MWField . D-20
Class MWComplex . D-21
Class MWSparse . D-23
Class MWArg . D-26

v

Enumerations . D-28
Enum mwArrayFormat . D-28
Enum mwDataType . D-28
Enum mwDateFormat . D-29

E
Troubleshooting

vi Contents

Preface

“What Is MATLAB COM Builder?” on
page viii

Briefly describes the purpose of MATLAB COM Builder.

“Required Background” on page ix Describes other products you need to have familiarity
with for COM Builder use.

“Requirements for MATLAB COM
Builder” on page x

Describes system and application requirments for COM
Builder use.

“Related Products” on page xi Describes products relevant to the tasks you can perform
with MATLAB COM Builder.

“Typographical Conventions” on
page xii

Describes the typographical conventions used throughout
this document.

 Preface

viii

What Is MATLAB COM Builder?
The MATLAB COM Builder is an extension to the MATLAB Compiler that
enables customers to automatically convert MATLAB applications to
Component Object Model (COM) objects. Developers can do modeling and
analysis in MATLAB and convert the models to ready-to-use COM objects.
These objects can be immediately integrated with any COM-based application..

Required Background

ix

Required Background
Users of this product need to be familiar with

• MATLAB and the MATLAB Compiler

• Visual Basic

It is helpful to have some background in Component Object Model (COM)
objects (DLLs).

See the documentation provided by the vendors for detailed information.

 Preface

x

Requirements for MATLAB COM Builder

System Requirements
System requirements and restrictions on use for COM Builder are almost
identical to those listed in the MATLAB Compiler User’s Guide. For specific
information see the “System Requirements” section under “Microsoft Windows
on PCs” in your Compiler document.

Compiler Requirements
Because not all compilers are capable of producing Microsoft-compatible COM
objects, COM Builder supports only these compiler choices:

• Borland C++ Builder 4

• Borland C++ Builder 5

• Borland C++ Builder 6

• Microsoft Visual Studio 5.0

• Microsoft Visual Studio 6.0

• Microsoft Visual Studio .NET

After installing COM Builder, you must run the MATLAB Compiler mbuild
tool with the -setup argument. You can find information about mbuild in the
MATLAB Compiler User’s Guide in the section “Building Stand-Alone
Applications on PCs.” You also need to run the MATLAB command
mccsavepath one time to set up the MATLAB Compiler search path. Type
help mccsavepath at the MATLAB command line for a description of this
command.

Limitations and Restrictions
In general, limitations and restrictions on the use of MATLAB COM Builder
are the same as those for the MATLAB Compiler. See the “Limitations and
Restrictions” section of the MATLAB Compiler User’s Guide for details. Note
that although the Compiler supports some usage of the MATLAB input
command, MATLAB COM Builder does not support this command at all.

Related Products

xi

Related Products
The MathWorks provides several products relevant to the tasks you can
perform with MATLAB COM Builder.

For more information about any of these products, see either

• The online documentation for that product if it is installed or if you are
reading the documentation from the CD

• The MathWorks Web site, at http://www.mathworks.com; see the “products”
section

Note The toolboxes listed below all include functions that extend the
capabilities of MATLAB.

Product Description

MATLAB Compiler Convert MATLAB M-files to C and C++ code

MATLAB Runtime
Server

Deploy runtime versions of MATLAB
applications

MATLAB Web Server Use MATLAB with HTML Web applications

 Preface

xii

Typographical Conventions
This manual uses some or all of these conventions.

Item Convention Example

Example code Monospace font To assign the value 5 to A,
enter

A = 5

Function names, syntax,
filenames, directory/folder
names, and user input

Monospace font The cos function finds the
cosine of each array element.
Syntax line example is
MLGetVar ML_var_name

Buttons and keys Boldface with book title caps Press the Enter key.

Literal strings (in syntax
descriptions in reference
chapters)

Monospace bold for literals f = freqspace(n,'whole')

Mathematical
expressions

Italics for variables
Standard text font for functions,
operators, and constants

This vector represents the
polynomial p = x2 + 2x + 3.

MATLAB output Monospace font MATLAB responds with
A =

5

Menu and dialog box titles Boldface with book title caps Choose the File Options
menu.

New terms and for
emphasis

Italics An array is an ordered
collection of information.

Omitted input arguments (...) ellipsis denotes all of the
input/output arguments from
preceding syntaxes.

[c,ia,ib] = union(...)

String variables (from a
finite list)

Monospace italics sysc = d2c(sysd,'method')

1

Overview

“Building a Deployable Application” on
page 1-2

Provides a brief overview of how you use MATLAB COM
Builder to create and deploy an application.

1 Overview

1-2

Building a Deployable Application
Using MATLAB COM Builder to create a COM component is a simple process
requiring a sequence of four steps. For details see

• “Creating a Project” on page 1-3

• “Managing M-Files and MEX-Files” on page 1-5

• “Building a Project” on page 1-7

• “Packaging and Distributing the Component” on page 1-7

This section references various menus provided by the COM Builder graphical
user interface (GUI). For a full discussion of these menus, see Chapter 2,
“Graphical User Interface.”

Elements of a COM Builder Project
A project consists of all the elements necessary to build a deployable
application using the MATLAB COM Builder. COM Builder components are
COM objects accessible through Visual Basic, C++, or any other language that
supports COM. COM is an acronym for Component Object Model, which is
Microsoft’s binary standard for object interoperability. Each COM object
exposes one or more classes to the Visual Basic programming environment.
Each class contains a set of functions called methods, corresponding to the
original MATLAB functions included in the component’s project.

Classes
When creating a component, you must additionally provide one or more class
names. The component name represents the name of the DLL file to be created.
A class name denotes the name of the class that performs a call on a specific
method at run-time. The relationship between component name and class
name, and which methods (MATLAB functions) go into a particular class, are
purely organizational. As a general rule, when compiling many MATLAB
functions, it helps to determine a scheme of function categories and to create a
separate class for each category. The name of each class should be descriptive
of what the class does.

Versions
MATLAB COM Builder components also support a simple versioning
mechanism. A version number is attached to a given component. This number

Building a Deployable Application

1-3

gets automatically built into the DLL file name and the system registry
information. As a general rule, the first version of a component is 1.0 (the
default value if none is chosen). Changes made to the component before
deployment keep the same version number. After deployment, change the
version number for all subsequent changes, so that you can easily manage the
new and old versions. The system sees classes in different versions of the same
component as distinct, even if they have the same name.

Creating a Project
To begin project creation, enter the MATLAB command comtool at the
command line. The MATLAB COM Builder main window appears.

Figure 1-1: MATLAB COM Builder Main Window

For a complete description of the features available from this window, see
“Graphical User Interface Menus” on page 2-2.

Select File -> New Project on this window to view the New Project Settings
dialog box.

1 Overview

1-4

Figure 1-2: New Project Settings Dialog Box

Component name denotes the name of the DLL created later in the build
process. After you enter the component name, the GUI automatically enters a
Class name identical to the component name. You can change the class name
to something more descriptive. Although the component name and class name
can be the same, the component name cannot match the name of any M- or
MEX-files added to the project later.

To add a class to your component, enter the class name in the Class name field
and click Add>>. The added class now appears in the Classes list. .

The Project version default value is 1.0. See “Versions” on page 1-2 for
additional information about Project version.

Project directory specifies where any project and build files are written when
compiling and packaging your models. The project directory is automatically
generated from the name of your current directory and the component name.

Building a Deployable Application

1-5

Note You can accept the automatically generated project directory path or
choose another of your liking. Once you click OK on this menu, this path is
saved. If you later decide to move the project or change anything on its path,
you need to redo the entire project specification process, including adding files
to the project (see “Project Settings” on page 2-5) and respecifying the project
directory path.

You can choose to generate C or C++ code. Components written in C give better
performance, while C++ components are more readable, allowing easier
modification of the generated code if needed. The files generated pertaining to
the COM interface are always C++ files regardless of which option you choose.

If your models contain MATLAB Handle Graphics® calls, include the
MATLAB C/C++ Graphics library in your project by selecting
Use Handle Graphics library.

You can also create a debug version of your compiled models and can specify
verbose output when you invoke the MATLAB Compiler. A debug version of
your component:

• Enables backtraces so that any reported error shows the M-file and line
where the error occurred. The full backtrace is reported. Without debugging,
you get the error without any indication of its location in your MATLAB code.

• Allows full debugging using the Visual Studio debugger.

Once you accept these settings on the New Project Settings dialog box by
clicking OK, they become part of your project workspace and are saved to the
project file along with the names of any M- or MEX- files you subsequently add
to the project. A project file of the name <component_name>.cbl is
automatically saved to the project directory.

Managing M-Files and MEX-Files
After you create a project, you enable the Project, Build and Component
menu options on the MATLAB COM Builder main window.

1 Overview

1-6

Figure 1-3: Main Window with Options Activated

Add M- and/or MEX-files to the project by clicking the Add File button or
selecting the Project -> Add File… menu choice. You can add only a single file
at a time to the project.

Note The name of any file added to the project cannot duplicate the name of
any function existing in the library of precompiled functions.

The Remove button or Project -> Remove File menu choice removes any
selected M- or MEX-files. You can highlight multiple files for removal at one
time.

The Edit button, the Project -> Edit File… or double-clicking an M-file name
opens the selected M-file(s) in the MATLAB editor for modification or
debugging. You cannot edit MEX files.

Building a Deployable Application

1-7

Building a Project
After you define your project settings and add the desired M- and MEX-
functions, you can build a deployable DLL. Choosing Build -> COM Object or
clicking the Build button invokes the MATLAB Compiler, writing the
intermediate source files to <project_dir>\src and the output files necessary
for deployment to <project_dir>\distrib.

Build Status
The Build Status panel shows the output of the build process and informs you
of any problems encountered. The files appearing in the
<project_dir>\distrib directory will be a DLL. The resulting DLL is
automatically registered on your system.

To clear the Build Status panel, select Build -> Clear Status. The output of
the build process is saved in the file <project_dir>\build.log. To open the
Build Log, choose Build -> Open Build Log. The Build Log provides a record
of the build process that you can refer to after you have cleared the
Build Status panel. If you ever contact MathWorks Technical Support with a
question about the build process, you will be asked to provide a copy of this log.

Packaging and Distributing the Component
Once you have successfully compiled your models and tested the COM object,
you are ready to package the component for distribution to your end users.

Choose Component -> Package Component to create a self-extracting
executable containing these files.

File Purpose

_install.bat Script run by the
self-extracting executable

<componentname_projectversion>.dll Compiled component

mglinstaller.exe MATLAB math and graphics
installer

1 Overview

1-8

The self-extracting executable is named <componentname>.exe.

Running the installer on a target machine performs these steps:

• mglinstaller installs the MATLAB C/C++ Math and Graphics libraries.

Action: Add the <application>\bin\win32 directory that mglinstaller
creates to your path. (<application> represents the deployed application’s
root directory, the directory where the deployed application resides on your
system.)

• mwregsvr registers mwcomutil.dll and
<componentname>_<projectversion>.dll.

You must repeat this distribution process on each target machine.

mwcomutil.dll COM Builder utility library

mwregsvr.exe Executable that registers DLLs
on target machines

File Purpose

2

Graphical User Interface

“Graphical User Interface Menus” on
page 2-2

Describes the complete set of graphical user interface
menus that can be generated with the comtool function.

“Project Settings” on page 2-5 Describes how to create project settings for a new project
or edit the settings for an existing project.

“Component Information” on page 2-7 Discusses the dialog box that presents the component
information stored in the registry.

2 Graphical User Interface

2-2

Graphical User Interface Menus
The MATLAB function comtool displays the MATLAB COM Builder graphical
user interface (GUI) main window.

The information below describes the use of the various menus that the main
window provides. These menus are

• “File Menu” on page 2-2

• “Project Menu” on page 2-3

• “Build Menu” on page 2-4

• “Component Menu” on page 2-4

• “Help Menu” on page 2-4

File Menu
The File menu creates and manages MATLAB COM Builder projects.

Graphical User Interface Menus

2-3

• New Project opens the project settings dialog box. This menu item creates a
project workspace where you can add M- and MEX-files to the project and
store project settings.

• Open Project allows you to load a previously saved project.

• Save Project saves the current project. If you have not yet saved the current
project, you are prompted for a filename.

• Save As Project saves the current project after prompting for a filename.

• Close Project closes the current project.

• Close COMTOOL closes the COM Builder interface.

Project Menu
The Project menu controls the management of the current project’s files.

• Add File adds an M-file or MEX-file to the current project. (The Add File
button in the Project files frame of the main window performs the same
task).

• Edit File allows you to edit the selected M-file. (The Edit button in the
Project files frame of the main window performs the same task.)

• Remove File removes the currently selected files from the project. (The
Remove button in the Project files frame of the main window performs the
same task.)

2 Graphical User Interface

2-4

• Settings opens the project settings dialog box showing the current project’s
information. See “Project Settings” on page 2-5 for details.

Build Menu
The Build menu controls the building of the project’s files into a COM object.

• COM Object builds project files into a COM object.

• Clear Status clears the Build status window.

• Open Build Log displays project status that has been saved in this log file.

Component Menu
The Component menu complete the process of building a deployable
application.

• Package Component readies files for deployment. The deployable files are
packaged in a self-extracting executable.

• Component Info displays a dialog box with information about the current
project’s component and component versions. See “Component Information”
on page 2-7 for details.

Help Menu
The Help menu provides access to the context-sensitive help for the MATLAB
COM Builder graphical user interface.

Project Settings

2-5

Project Settings
Choosing New Project or Open Project from the File menu or Settings from
the Project menu opens the appropriate Project Settings dialog box.

See “Versioning” on page C-5 for a description of Component name,
Class name and Project version. Project directory is the location of any
project output files.

You can choose to generate C or C++ code. Components written in C give better
performance, while C++ components are more readable, making it easier for
you to modify the generated code if needed.

If your models contain MATLAB Handle Graphics calls, select
Use Handle Graphics library.

You can create a debug version of your compiled models and can specify verbose
output when you invoke the MATLAB Compiler.

New Project Settings Existing Project Settings

2 Graphical User Interface

2-6

Adding or Removing Classes
MATLAB COM Builder allows you to have multiple classes per component. To
add a new class to your component, enter the class name in the Class name
field and click Add>>. The added class now appears in the Classes list.

To remove a class or classes from the component, select the class(es) from the
Classes list and click Remove.

Note that any new classes become part of the newly built component. Removed
classes are removed from the component on the subsequent build.

Component Information

2-7

Component Information
The Component Info choice under the Component menu displays the
Component dialog box.

This dialog presents the component information that is stored in the registry.

See Table C-2, Registry Information Returned by componentinfo, on page C-8,
for an explanation of these fields.

2 Graphical User Interface

2-8

3
Programming with COM
Builder Components

“Overview” on page 3-2 Describes the integration of MATLAB COM Builder
components into Visual Basic.

“Adding Class Properties to COM
Builder Objects” on page 3-3

Describes class properties, which allow an object to retain
an internal state between method calls.

“Adding Events to COM Builder
Objects” on page 3-6

Describes how you can turn a MATLAB function into an
event function.

“Creating an Instance of a Class” on
page 3-10

Describes two techniques for calling a class method
(compiled MATLAB function).

“Calling the Methods of a Class
Instance” on page 3-13

Describes how you call the class methods to access the
compiled MATLAB functions.

“Processing varargin and varargout
Arguments” on page 3-15

Describes how you can pass multiple arguments as a
varargin array by creating a Variant array, assigning
each element of the array to the respective input
argument.

“Handling Errors During a Method
Call” on page 3-17

Describes the Visual Basic exception handling capability.

“Modifying Flags” on page 3-18 Describes array formatting and data conversion flags.

3 Programming with COM Builder Components

3-2

Overview
Each MATLAB COM Builder component is built as a stand-alone COM object.
You access a component through Visual Basic, C++, or any other language that
supports COM. This section provides general information on how to integrate
MATLAB COM Builder components into Visual Basic. It assumes that you
have a working knowledge of VB and is not intended to be a discussion on how
to program in Visual Basic. Refer to the VB documentation for general
programming information.

You can easily integrate MATLAB COM Builder components into a VB project
by creating a simple code module with functions and/or subroutines that load
the necessary components, call methods as needed, and process any errors. In
general, you need to address seven items in any code written to use MATLAB
COM Builder components:

• “Adding Class Properties to COM Builder Objects” on page 3-3

• “Adding Events to COM Builder Objects” on page 3-6

• “Creating an Instance of a Class” on page 3-10

• “Calling the Methods of a Class Instance” on page 3-13

• “Processing varargin and varargout Arguments” on page 3-15

• “Handling Errors During a Method Call” on page 3-17

• “Modifying Flags” on page 3-18

Note All code samples in this section are for illustration purposes and
reference a hypothetical class named myclass contained in a component
named mycomponent with a version number of 1.0.

Adding Class Properties to COM Builder Objects

3-3

Adding Class Properties to COM Builder Objects
Class properties allow an object to retain an internal state between method
calls. MATLAB COM Builder automatically converts all global variables
shared by the M-files that make up a class to properties on that class. Global
variables are variables that are declared with the global keyword. Properties
are particularly useful when you have a large array that doesn't change often,
but you need to operate on it frequently. In this case, the array can be set once
as a class property and operated on repeatedly without incurring the overhead
of passing (and converting) the data into each method every time it is called.

The next example illustrates using a class property in a matrix factorization
class. The example develops a class that performs Cholesky, LU, and QR
factorizations on the same matrix. It stores the input matrix as a class property
so that it won’t need to be passed to our factorization routines.

Consider these three M-files:

Cholesky.m
function [L] = Cholesky()
 global A;
 if (isempty(A))
 L = [];
 return;
 end
 L = chol(A);

LUDecomp.m
function [L,U] = LUDecomp()
 global A;
 if (isempty(A))
 L = [];
 U = [];
 return;
 end
 [L,U] = lu(A);

3 Programming with COM Builder Components

3-4

QRDecomp.m
function [Q,R] = QRDecomp()
 global A;
 if (isempty(A))
 Q = [];
 R = [];
 return;
 end
 [Q,R] = qr(A);

These three files share a common global variable A. Each function performs a
matrix factorization on A and returns the results.

To build the class, create a new COM Builder project named mymatrix with a
version of 1.0 and add a single class called myfactor to the component. Add the
above three M-files to the class and build.

Use the following Visual Basic subroutine to test the myfactor class. First set
a project reference to mymatrix 1.0 Type Library under Project->References
in the Visual Basic main menu. Then run this subroutine, which creates an
instance of the myfactor class and assigns a double matrix to the property A.
Finally, it calls the three factorization methods.

Sub TestFactor()
 Dim x(1 To 2, 1 To 2) As Double
 Dim C As Variant, L As Variant, U As Variant, _
 Q As Variant, R As Variant
 Dim factor As myfactor

 On Error GoTo Handle_Error
 Set factor = New myfactor
 x(1, 1) = 2#
 x(1, 2) = -1#
 x(2, 1) = -1#
 x(2, 2) = 2#
 factor.A = x
 Call factor.cholesky(1, C)
 Call factor.ludecomp(2, L, U)
 Call factor.qrdecomp(2, Q, R)
 Exit Sub

Adding Class Properties to COM Builder Objects

3-5

Handle_Error:
 MsgBox (Err.Description)
End Sub

3 Programming with COM Builder Components

3-6

Adding Events to COM Builder Objects
MATLAB COM Builder supports events, or callbacks, through a simple
MATLAB language pragma. You simply provide a MATLAB function stub that
serves as the prototype for the event, and then provide an implementation of
the function in your client code (Visual Basic, C++, etc.). The net effect is that
when any other MATLAB function calls the event function, the call is
dispatched to the “event handler” in the client code.

You can turn a MATLAB function into an event function by placing a %#event
pragma into the code. MATLAB interprets this statement as a comment. When
you include the same function as a method on a COM Builder object, the
compiler generates an “outgoing interface” for the method, which identifies the
method as an event. This outgoing interface is then implemented by the client
code. Some examples of how you might use callbacks in your code are

• To give a client application periodic feedback during a long-running
calculation. For example, if you have a task that requires n iterations, you
might signal an event to increment a progress bar in the user interface on
each iteration.

• ·To signal a warning during a calculation but continue execution of the task.

• To return intermediate results of a calculation to the user and continue
execution of the task.

The next example illustrates using a callback in conjunction with a Visual
Basic ProgressBar control. The MATLAB function iterate runs through n
iterations and fires an event every inc iterations. When the function ends, it
returns a single output. To simulate actually doing something, place a pause
statement in the main loop so that the function waits for 1 second in each
iteration.

Consider the MATLAB functions iterate.m and progress.m.

iterate.m
function [x] = iterate(n,inc)
 %initialize x
 x = 0;
 % Run n iterations, callback every inc time
 k = 0;
 for i=1:n

Adding Events to COM Builder Objects

3-7

 k = k + 1;
 if k == inc
 progress(i);
 k = 0;
 end;
 % Do some work on x...
 x = x + 1;
 % We will just pause for 1 second to simulate doing

% something
 pause(1);
 end;

progess.m
function progress(i)
 %#event
 i

The iterate function runs through n iterations and calls the progress function
every inc iterations, passing the current iteration number as an argument.
When this function is executed in MATLAB, the value of i is displayed each
time the progress function gets called. Suppose you create a COM Builder
component that has these two functions included as class methods. This
example assumes a component with a single class named myclass. The
resulting COM class has a method iterate and an event progress. To receive
the event calls implement a “listener” in your Visual Basic code. The VB syntax
for the event handler needed for this example is

Sub aClass_progress(ByVal i As Variant)

where aClass is the variable name used for your class instance. The ByVal
qualifier is used on all input parameters of an event function. To enable the
listening process, dimension the aClass variable with the WithEvents
keyword. Refer to the Visual Basic documentation for a complete discussion of
VB event processing.

This example is based on a simple VB form with three TextBox controls, one
CommandButton control, and one ProgressBar control. The first text box, Text1,
inputs the number of iterations, stored in the form variable N. The second text
box, Text2, inputs the callback increment, stored in the variable Inc. The third
text box, Text3, displays the output of the function when it finishes executing.
The command button, Command1, executes the iterate method on your class

3 Programming with COM Builder Components

3-8

when pressed. The progress bar control, ProgressBar1, updates itself in
response to the progress event.

'Form Variables
Private WithEvents aClass As myclass 'Class instance
Private N As Long 'Number of iterations
Private Inc As Long 'Callback increment
Private Sub Form_Load()
'When form is loaded, create new myclass instance
 Set aClass = New myclass
 'Initialize variables
 N = 2
 Inc = 1
End Sub
Private Sub Text1_Change()
'Update value of N from Text1 text whenever it changes
 On Error Resume Next
 N = CLng(Text1.Text)
 If Err <> 0 Then N = 2
 If N < 2 Then N = 2
End Sub
Private Sub Text2_Change()
'Update value of Inc from Text2 text whenever it changes
 On Error Resume Next
 Inc = CLng(Text2.Text)
 If Err <> 0 Then Inc = 1
 If Inc <= 0 Then Inc = 1
End Sub
Private Sub Command1_Click()
'Execute function whenever Execute button is clicked
 Dim x As Variant
 On Error GoTo Handle_Error
 'Initialize ProgressBar
 ProgressBar1.Min = 1
 ProgressBar1.Max = N
 Text3.Text = ""
 'Iterate N times and call back at Inc intervals
 Call aClass.iterate(1, x, CDbl(N), CDbl(Inc))
 Text3.Text = Format(x)
 Exit Sub

Adding Events to COM Builder Objects

3-9

Handle_Error:
 MsgBox (Err.Description)
End Sub
Private Sub aClass_progress(ByVal i As Variant)
'Event handler. Called each time the iterate function
'calls the progress function. Progress bar is updated
'with the value passed in, causing the control to advance.
 ProgressBar1.Value = i
End Sub

3 Programming with COM Builder Components

3-10

Creating an Instance of a Class
Before calling a class method (compiled MATLAB function), you must create an
instance of the class that contains the method. Visual Basic provides two
techniques for doing this:

• CreateObject function

• Visual Basic New operator

CreateObject Function
This method uses the Visual Basic application program interface (API)
CreateObject function to create an instance of the class. To use this method,
dimension a variable of type Object to hold a reference to the class instance
and call CreateObject with the class’ programmatic identifier (ProgID) as an
argument as shown in the next example.

Function foo(x1 As Variant, x2 As Variant) As Variant
Dim aClass As Object

On Error Goto Handle_Error
aClass = CreateObject("mycomponent.myclass.1_0")
' (call some methods on aClass)
Exit Function

Handle_Error:
foo = Err.Description

End Function

Visual Basic New Operator
This method uses the Visual Basic New operator on a variable explicitly
dimensioned as the class to be created. Before using this method, you must
reference the type library containing the class in the current VB project. Do
this by selecting the Project menu from the Visual Basic editor, and then
selecting References… to display the Available References list. From this list
select the necessary type library.

The following example illustrates using the New operator to create a class
instance. It assumes that you have selected mycomponent 1.0 Type Library
from the Available References list before calling this function.

Function foo(x1 As Variant, x2 As Variant) As Variant

Creating an Instance of a Class

3-11

Dim aClass As mycomponent.myclass

On Error Goto Handle_Error
Set aClass = New mycomponent.myclass
' (call some methods on aClass)
Exit Function

Handle_Error:
foo = Err.Description

End Function

In this example, the class instance could be dimensioned as simply myclass.
The full declaration in the form <component-name>.<class-name> guards
against name collisions that could occur if other libraries in the current project
contain types named myclass.

Both methods are equivalent in functionality. The first method does not
require a reference to the type library in the VB project, while the second
results in faster code execution. The second method has the added advantage
of enabling the Auto-List-Members and Auto-Quick-Info capabilities of the
VB editor to work with your classes.

In the previous two examples, the class instance used to make the method call
was a local variable of the procedure. This creates and destroys a new class
instance for each call. An alternative approach is to declare one single
module-scoped class instance that is reused by all function calls, as in the
initialization code of the previous example.

3 Programming with COM Builder Components

3-12

The next example illustrates this technique with the second method:

Dim aClass As mycomponent.myclass

Function foo(x1 As Variant, x2 As Variant) As Variant
On Error Goto Handle_Error
If aClass Is Nothing Then

Set aClass = New mycomponent.myclass
End If
' (call some methods on aClass)
Exit Function

Handle_Error:
foo = Err.Description

End Function

Calling the Methods of a Class Instance

3-13

Calling the Methods of a Class Instance
After you have created a class instance, you can call the class methods to access
the compiled MATLAB functions. MATLAB COM Builder applies a standard
mapping from the original MATLAB function syntax to the method’s argument
list. See section “Calling Conventions” on page A-7 for a detailed description of
the mapping from MATLAB functions to COM class method calls.

When a method has output arguments, the first argument is always nargout,
which is of type Long. This input parameter passes the normal MATLAB
nargout parameter to the compiled function and specifies how many outputs
are requested. Methods that do not have output arguments do not pass a
nargout argument. Following nargout are the output parameters listed in the
same order as they appear on the left side of the original MATLAB function.
Next come the input parameters listed in the same order as they appear on the
right side of the original MATLAB function. All input and output arguments
are typed as Variant, the default Visual Basic data type.

The Variant type can hold any of the basic VB types, arrays of any type, and
object references. Appendix B, “Data Conversion” describes in detail the
conversion of Variants of any basic type to and from MATLAB data types. In
general, you can supply any Visual Basic type as an argument to a class
method, with the exception of Visual Basic UDTs. When you pass a simple
Variant type as an output parameter, the called method allocates the received
data and frees the original contents of the Variant. In this case it is sufficient
to dimension each output argument as a single Variant. When an object type
(like an Excel Range) is passed as an output parameter, the object reference is
passed in both directions, and the object’s Value property receives the data.

The following examples illustrate the process of passing input and output
parameters from VB to MATLAB COM Builder component class methods.

The first example is a function that takes two inputs and returns one output.
This function dispatches the call to a class method that corresponds to a
MATLAB function of the form function y = foo(x1,x2).

Function foo(x1 As Variant, x2 As Variant) As Variant
Dim aClass As Object
Dim y As Variant

On Error Goto Handle_Error
aClass = CreateObject("mycomponent.myclass.1_0")

3 Programming with COM Builder Components

3-14

Call aClass.foo(1,y,x1,x2)
foo = y
Exit Function

Handle_Error:
foo = Err.Description

End Function

The second example rewrites the same function as a subroutine:

Sub foo(Xout As Variant, X1 As Variant, X2 As Variant)
Dim aClass As Object

On Error Goto Handle_Error
aClass = CreateObject("mycomponent.myclass.1_0")
Call aClass.foo(1,Xout,X1,X2)
Exit Sub

Handle_Error:
MsgBox(Err.Description)

End Sub

Processing varargin and varargout Arguments

3-15

Processing varargin and varargout Arguments
When varargin and/or varargout are present in the original MATLAB
function, these parameters are added to the argument list of the class method
as the last input/output parameters. You can pass multiple arguments as a
varargin array by creating a Variant array, assigning each element of the
array to the respective input argument.

The following example creates a varargin array to call a method resulting from
a MATLAB function of the form y = foo(varargin).

Function foo(x1 As Variant, x2 As Variant, x3 As Varaint, _
x4 As Variant, x5 As Variant) As Variant

Dim aClass As Object
Dim v(1 To 5) As Variant
Dim y As Variant

On Error Goto Handle_Error
v(1) = x1
v(2) = x2
v(3) = x3
v(4) = x4
v(5) = x5
aClass = CreateObject("mycomponent.myclass.1_0")
Call aClass.foo(1,y,v)
foo = y
Exit Function

Handle_Error:
foo = Err.Description

End Function

The MWUtil class included in the MWComUtil utility library provides the MWPack
helper function to create varargin parameters. See Appendix D, “Utility
Library” for more details.

The next example processes a varargout parameter into three separate
arguments. This function makes use of the MWUnpack function in the utility
library. The MATLAB function used is varargout = foo(x1,x2).

Sub foo(Xout1 As Variant, Xout2 As Variant, Xout3 As Variant, _
Xin1 As Variant, Xin2 As Variant)

Dim aClass As Object

3 Programming with COM Builder Components

3-16

Dim aUtil As Object
Dim v As Variant

On Error Goto Handle_Error
aUtil = CreateObject("MWComUtil.MWUtil")
aClass = CreateObject("mycomponent.myclass.1_0")
Call aClass.foo(3,v,Xin1,Xin2)
Call aUtil.MWUnpack(v,0,True,Xout1,Xout2,Xout3)
Exit Sub

Handle_Error:
MsgBox(Err.Description)

End Sub

Handling Errors During a Method Call

3-17

Handling Errors During a Method Call
Errors that occur while creating a class instance or during a class method call
create an exception in the current procedure. Visual Basic provides an
exception handling capability through the On Error Goto <label> statement,
in which the program execution jumps to <label> when an error occurs.
(<label> must be located in the same procedure as the On Error Goto
statement). All errors are handled this way, including errors within the
original MATLAB code. An exception creates a Visual Basic ErrObject object
in the current context in a variable called Err. (See the Visual Basic
documentation for a detailed discussion on VB error handling.)

3 Programming with COM Builder Components

3-18

Modifying Flags
Each MATLAB COM Builder component exposes a single read/write property
named MWFlags of type MWFlags. The MWFlags property consists of two sets of
constants: array formatting flags and data conversion flags. The data
conversion flags change selected behaviors of the data conversion process from
Variants to MATLAB types and vice versa. By default, MATLAB COM Builder
components allow setting data conversion flags at the class level through the
MWFlags class property. This holds true for all Visual Basic types, with the
exception of the COM Builder MWStruct, MWField, MWComplex, MWSparse, and
MWArg types. Each of these types exposes its own MWFlags property and ignores
the properties of the class whose method is being called. The MWArg class is
supplied specifically for the case when a particular argument needs different
settings from the default class properties.

This section provides a general discussion of how to set these flags and what
they do. See “Class MWFlags” on page D-8 for a detailed discussion of the
MWFlags type, as well as additional code samples.

Array Formatting Flags
Array formatting flags guide the data conversion to produce either a MATLAB
cell array or matrix from general Variant data on input or to produce an array
of Variants or a single Variant containing an array of a basic type on output.

The following examples assume that you have referenced the MWComUtil
library in the current project by selecting Tools -> References… and selecting
MWComUtil 1.0 Type Library from the list.

Sub foo()
Dim aClass As mycomponent.myclass
Dim var1(1 To 2, 1 To 2), var2 As Variant
Dim x(1 To 2, 1 To 2) As Double
Dim y1,y2 As Variant

On Error Goto Handle_Error
var1(1,1) = 11#
var1(1,2) = 12#
var1(2,1) = 21#
var1(2,2) = 22#
x(1,1) = 11

Modifying Flags

3-19

x(1,2) = 12
x(2,1) = 21
x(2,2) = 22
var2 = x
Set aClass = New mycomponent.myclass
Call aClass.foo(1,y1,var1)
Call aClass.foo(1,y2,var2)
Exit Sub

Handle_Error:
MsgBox(Err.Description)

End Sub

Here, two Variant variables, var1 and var2 are constructed with the same
numerical data, but internally they are structured differently. var1 is a 2-by-2
array of Variants with each element containing a 1-by-1 Double, while var2 is
a 1-by-1 Variant containing a 2-by-2 array of Doubles. According to the default
data conversion rules listed in Table B-3, COM VARIANT to MATLAB
Conversion Rules, on page B-10, var1 converts to a 2-by-2 cell array with each
cell occupied by a 1-by-1 double, and var2 converts directly to a 2-by-2 double
matrix. The InputArrayFormat flag controls how arrays of these two types are
handled. As it turns out, the two arrays in the previous example both convert
to double matrices because the default value for the InputArrayFormat flag is
mwArrayFormatMatrix. This default is used because, as it turns out, array data
originating from Excel ranges is always in the form of an array of Variants
(like var1 of the previous example), and MATLAB functions most often deal
with matrix arguments. But what if you really want a cell array? In this case,
you set the InputArrayFormat flag to mwArrayFormatCell. Do this by adding
the following line after creating the class and before the method call.

aClass .MWFlags.ArrayFormatFlags.InputArrayFormat =
mwArrayFormatCell

Setting this flag presents all array input to the compiled MATLAB function as
cell arrays.

Similarly, you can manipulate the format of output arguments using the
OutputArrayFormat flag. You can also modify array output with the
AutoResizeOutput and TransposeOutput flags.

AutoResizeOutput is used for Excel Range objects passed directly as output
parameters. When this flag is set, the target range automatically resizes to fit

3 Programming with COM Builder Components

3-20

the resulting array. If this flag is not set, the target range must be at least as
large as the output array or the data is truncated.

The TransposeOutput flag transposes all array output. This flag is useful when
dealing with MATLAB functions that output one-dimensional arrays. By
default, MATLAB realizes one-dimensional arrays as 1-by-n matrices (row
vectors), and you may prefer column output.

Data Conversion Flags
Data conversion flags deal with type conversions of individual array elements.
The two data conversion flags, CoerceNumericToType and InputDateFormat,
govern how numeric and date types are converted from VB to MATLAB.
Consider this example:

Sub foo()
Dim aClass As mycomponent.myclass
Dim var1, var2 As Variant
Dim y As Variant

On Error Goto Handle_Error
var1 = 1
var2 = 2#
Set aClass = New mycomponent.myclass
Call aClass.foo(1,y,var1,var2)
Exit Sub

Handle_Error:
MsgBox(Err.Description)

End Sub

This example converts var1 of type Variant/Integer to an int16 and var2 of
type Variant/Double to a double. If the original MATLAB function expects
doubles for both arguments, this code might cause an error. One solution is to
assign a double to var1, but this may not be possible or desirable. In such a
case set the CoerceNumericToType flag to mwTypeDouble, causing the data
converter to convert all numeric input to double. In the previous example,
place the following line after creating the class and before calling the methods.

aClass .MWFlags.DataConversionFlags.CoerceNumericToType =
mwTypeDouble

Modifying Flags

3-21

The InputDateFormat flag controls how the VB Date type is converted. This
example sends the current date and time as an input argument and converts it
to a string.

Sub foo()
Dim aClass As mycomponent.myclass
Dim today As Date
Dim y As Variant

On Error Goto Handle_Error
today = Now
Set aClass = New mycomponent.myclass
aClass. MWFlags.DataConversionFlags.InputDateFormat =

mwDateFormatString
Call aClass.foo(1,y,today)
Exit Sub

Handle_Error:
MsgBox(Err.Description)

End Sub

The next example uses an MWArg object to modify the conversion flags for one
argument in a method call. In this case the first output argument (y1) is
coerced to a Date, and the second output argument (y2) uses the current default
conversion flags supplied by aClass.

Sub foo(y1 As Variant, y2 As Variant)
Dim aClass As mycomponent.myclass
Dim ytemp As MWArg
Dim today As Date

On Error Goto Handle_Error
today = Now
Set aClass = New mycomponent.myclass
Set y1 = New MWArg
y1.MWFlags.DataConversionFlags.OutputAsDate = True
Call aClass.foo(2, ytemp, y2, today)
y1 = ytemp
Exit Sub

Handle_Error:
MsgBox(Err.Description)

End Sub

3 Programming with COM Builder Components

3-22

4

Usage Examples

“Magic Square Example” on page 4-2 Demonstrates the creation of a COM component from a
simple MATLAB M-file

“Spectral Analysis Example” on
page 4-11

Shows the creation of a comprehensive Excel add-in.

4 Usage Examples

4-2

Magic Square Example
This example uses a simple M-file that takes a single input and creates a magic
square of that size. It then builds a COM Builder component using this M-file
as a class method. Finally, the example shows the integration of this
component into a stand-alone Visual Basic application. The application accepts
the magic square size as input and displays the resultant matrix in a List View
control box.

Creating the M-file
To get started, create the M-file mymagic.m containing the following code:

function y = mymagic(x)
y = magic(x);

Creating the Project
Enter the command comtool to start the MATLAB COM Builder graphical
user interface. From the File menu select New Project. This opens the
New Project Settings dialog.

Magic Square Example

4-3

Figure 4-1: Empty New Project Settings Dialog Box

On the New Project Settings dialog, enter the settings as listed below:

• In the Component name text block enter the component name magicdemo.
Press the Tab key to move to the Class name text block.

• Enter magic for the class name.

• The version has a default of 1.0. Leave this number unchanged.

• The Project directory field contains a default of a combination of the
directory where COM Builder was started and the Component name,
magicdemo. You can change this to any directory that you choose. If the
directory you choose does not exist, you will be asked to create it.

• Select C as the code to compile in.

• Leave all Compiler options unselected.

The New Project Settings dialog now looks like Figure 4-2.

4 Usage Examples

4-4

Figure 4-2: New Project Settings with Entries

• Click OK to create the magicdemo project.

Summary of Project Settings
Component name: magicdemo

Class name: magic

Project version: 1.0

Project directory: (accept default or choose another directory)

Compile code in: C

Compiler options: (leave unselected)

Use Handle Graphics library = No

Build debug version = No

Show verbose output = No

Default directory name depends upon
the location of MATLAB on your
machine. You can choose an
alternative directory if you do not
want to accept the default.

Magic Square Example

4-5

Building the Project
• From the COM Builder graphical user interface click Add File.

• Select the file mymagic.m from the directory where you saved it and click
Open.

• Click Build or select COM Object from the Build menu.

Creating the Visual Basic Project

Note This procedure assumes that you are using Visual Basic 6.0.

1 Start Visual Basic.

2 In the New Project dialog box, select Standard EXE as the project type and
click Open. This creates a new Visual Basic project with a blank form.

3 From the main menu, select Project->References to display the
Project References dialog box.

4 Select magicdemo 1.0 Type Library from the list of available components,
and click OK.

5 Returning to the Visual Basic main menu, select Project->Components to
display the Components dialog box.

6 Select Microsoft Common Controls 6.0 from the list, click Apply, then click
Close.

4 Usage Examples

4-6

Creating the User Interface
Now add a series of controls to the blank form to complete the dialog, as
summarized in the next table.

Figure 4-3, Controls Layout on the Form, on page 4-7 shows the shows the
controls layout on the form.

Control Type Control Name Properties Purpose

Frame Frame1 Caption = Magic
Squares Demo

Groups controls

Label Label1 Caption = Magic
Square Size

Labels the magic square edit
box.

TextBox edtSize Accepts input of magic square
size.

CommandButton btnCreate Caption = Create When pressed, creates a new
magic square with current size.

ListView lstMagic GridLines = True

LabelEdit =
lvwManual

View = lvwReport

Displays the magic square.

Magic Square Example

4-7

Figure 4-3: Controls Layout on the Form

When the form and controls are complete, add the code below to the form. This
code references the control and variable names listed above. If you have given
different names for any of the controls or any variable, change this code to
reflect those differences.

Private Size As Double 'Holds current matrix size
Private theMagic As magicdemo.magic 'magic object instance

Private Sub Form_Load()
'This function is called when the form is loaded.
'Creates a new magic class instance.
 On Error GoTo Handle_Error
 Set theMagic = New magicdemo.magic
 Size = 0
Exit Sub
Handle_Error:
 MsgBox (Err.Description)
End Sub

Frame1

btncreateedtSize

lstMagic

Label1

Form1

4 Usage Examples

4-8

Private Sub btnCreate_Click()
'This function is called when the Create button is pressed.
'Calls the mymagic method, and displays the magic square.
 Dim y As Variant

If Size <= 0 Or theMagic Is Nothing Then Exit Sub
 On Error GoTo Handle_Error
 Call theMagic.mymagic(1, y, Size)
 Call ShowMatrix(y)
 Exit Sub
Handle_Error:
 MsgBox (Err.Description)
End Sub

Private Sub edtSize_Change()
'This function is called when ever the contents of the
'Text box change. Sets the current value of Size.
 On Error Resume Next
 Size = CDbl(edtSize.Text)
 If Err <> 0 Then
 Size = 0
 End If
End Sub

Private Sub ShowMatrix(y As Variant)
'This function populates the ListView with the contents of
'y. y is assumed to contain a 2D array.
 Dim n As Long
 Dim i As Long
 Dim j As Long
 Dim nLen As Long
 Dim Item As ListItem

 On Error GoTo Handle_Error
 'Get array size
 If IsArray(y) Then
 n = UBound(y, 1)
 Else
 n = 1
 End If

Magic Square Example

4-9

 'Set up Column headers
 nLen = lstMagic.Width / 5
 Call lstMagic.ListItems.Clear
 Call lstMagic.ColumnHeaders.Clear
 Call lstMagic.ColumnHeaders.Add(, , "", nLen, lvwColumnLeft)
 For i = 1 To n
 Call lstMagic.ColumnHeaders.Add(, , _
 "Column " & Format(i), nLen, lvwColumnLeft)
 Next
 'Add array contents
 If IsArray(y) Then
 For i = 1 To n
 Set Item = lstMagic.ListItems.Add(, , "Row " & Format(i))
 For j = 1 To n
 Call Item.ListSubItems.Add(, , Format(y(i, j)))
 Next
 Next
 Else
 Set Item = lstMagic.ListItems.Add(, , "Row 1")
 Call Item.ListSubItems.Add(, , Format(y))
 End If
 Exit Sub
Handle_Error:
 MsgBox (Err.Description)
End Sub

Creating the Executable
Now that the code is complete, you can create the standalone executable
magic.exe:

1 Save the project by selecting File->Save Project from the main menu.
Accept the default name for the main form and enter magic.vbp for the
project name.

2 Return to the File menu. Select File->Make magic.exe to create the
finished product.

4 Usage Examples

4-10

Testing the Application
You can run the magic.exe executable as you would any other program. When
the main dialog starts, enter a positive number in the input box and click the
Create button. A magic square of the input size appears as shown here. The
ListView control automatically inplements scrolling if the magic square is
larger than 4-by-4.

Figure 4-4: Running magic.exe

Packaging the Component
As a final step, package the magicdemo component and all supporting libraries
into a self-extracting executable. You can now install this package, along with
the magic.exe application, onto other computers. To package the component,
follow these steps:

1 Return to comtool. If comtool has been dismissed, start it again and reload
the magicdemo project.

2 Select Component->Package Component. This command creates the
magicdemo.exe self-extracting executable.

To install this component onto another computer, copy the magicdemo.exe
package and the magic.exe application to that machine, run magicdemo.exe
from a command prompt, and follow the instructions.

Spectral Analysis Example

4-11

Spectral Analysis Example
This example illustrates the creation of a comprehensive Excel add-in to
perform spectral analysis. It requires knowledge of Visual Basic forms and
controls, as well as Excel workbook events. See the VBA documentation for a
complete discussion of these topics.

The example creates an Excel add-in that performs an FFT on an input data
set located in a designated worksheet range. The function returns the FFT
results, an array of frequency points, and the power spectral density of the
input data. It places these results into ranges you indicate in the current
worksheet. You can also optionally plot the power spectral density. You develop
the function so that you can invoke it from the Excel Tools menu and can select
input and output ranges through a GUI.

To create this add-in requires four basic steps:

1 Build a stand-alone COM component from MATLAB code.

2 Implement the necessaryVBA code to collect input and dispatch the calls to
your component.

3 Create the GUI.

4 Create an Excel add-in and package all necessary components for
application deployment.

Building the Component
Your component will have one class with two methods, computefft and
plotfft. The computefft method computes the FFT and power spectral
density of the input data and computes a vector of frequency points based on
the length of the data entered and the sampling interval. The plotfft method
performs the same operations as computefft, but also plots the input data and
the power spectral density in a MATLAB figure window. The MATLAB code for
these two methods resides in two M-files, computefft.m and plotfft.m.

computefft.m:
function [fftdata, freq, powerspect] = computefft(data, interval)
 if (isempty(data))
 fftdata = [];
 freq = [];

4 Usage Examples

4-12

 powerspect = [];
 return;
 end
 if (interval <= 0)
 error('Sampling interval must be greater then zero');
 return;
 end
 fftdata = fft(data);
 freq = (0:length(fftdata)-1)/(length(fftdata)*interval);
 powerspect = abs(fftdata)/(sqrt(length(fftdata)));

plotfft.m:

function [fftdata, freq, powerspect] = plotfft(data, interval)
 [fftdata, freq, powerspect] = computefft(data, interval);
 len = length(fftdata);
 if (len <= 0)
 return;
 end
 t = 0:interval:(len-1)*interval;
 subplot(2,1,1), plot(t, data)
 xlabel('Time'), grid on
 title('Time domain signal')
 subplot(2,1,2), plot(freq(1:len/2), powerspect(1:len/2))
 xlabel('Frequency (Hz)'), grid on
 title('Power spectral density')

To proceed with the actual building of the component, follow these steps:

1 Start comtool. See “Graphical User Interface Menus” on page 2-2 for a
discussion of using comtool to build a COM component from a collection of
MATLAB M-files.

2 Create a new project with these settings:

• Component name: Fourier

• Class name: Fourier

• Project version: 1.0

Check Use Handle Graphics library.

Spectral Analysis Example

4-13

See “Project Settings” on page 2-5 for a description of new project settings.

3 Add the computefft.m and plotfft.m M-files to the project.

4 Save the project.

5 Click Build to create the component.

Integrating the Component with Visual Basic for
Applications
Having built your component, you can implement the necessary VBA code to
integrate it into Excel. Follow these steps to open Excel and select the libraries
you need to develop the add-in:

1 Start Excel.

2 From the Excel main menu, select Tools->Macro->Visual Basic Editor.

3 When the Visual Basic Editor starts, select Tools->References to display
the Project References Dialog. Check Fourier 1.0 Type Library and
MWComUtil 1.0 Type Library on the list.

Creating the Main VB Code Module For the Application
The add-in requires some initialization code and some global variables to hold
the application’s state between function invocations. To achieve this,
implement a Visual Basic code module to manage these tasks, as follows:

1 Right-click on the VBAProject item in the project window and select
Insert->Module from the pop-up menu.

2 A new module appears under Modules in the VBA Project. In the module’s
property page, set the Name property to FourierMain. See the next figure.

4 Usage Examples

4-14

Figure 4-5: VBA Project: Insert->Module

3 Enter the following code in the FourierMain module:

'
' FourierMain - Main module stores global state of controls
' and provides initialization code
'
Public theFourier As Fourier.Fourier 'Global instance of Fourier object
Public theFFTData As MWComplex 'Global instance of MWComplex to accept FFT
Public InputData As Range 'Input data range
Public Interval As Double 'Sampling interval
Public Frequency As Range 'Output frequency data range
Public PowerSpect As Range 'Output power spectral density range
Public bPlot As Boolean 'Holds the state of plot flag
Public bInitialized As Boolean 'Module-is-initialized flag

Spectral Analysis Example

4-15

Private Sub LoadFourier()
'Initializes globals and Loads the Spectral Analysis form
 Dim MainForm As frmFourier
 On Error GoTo Handle_Error
 Call InitApp
 Set MainForm = New frmFourier
 Call MainForm.Show
 Exit Sub
Handle_Error:
 MsgBox (Err.Description)
End Sub

Private Sub InitApp()
'Initializes classes and libraries. Executes once
'for a given session of Excel
 If bInitialized Then Exit Sub
 On Error GoTo Handle_Error

If theFourier Is Nothing Then
Set theFourier = New Fourier.Fourier

 End If
 If theFFTData Is Nothing Then
 Set theFFTData = New MWComplex
 End If
 bInitialized = True
 Exit Sub
Handle_Error:
 MsgBox (Err.Description)
End Sub

Creating The Visual Basic Form
The next step in the integration process develops a user interface for your
add-in using the Visual Basic Editor. Follow the steps outlined here to create a
new user form and populate it with the necessary controls:

1 Right-click on the VBAProject item in the project window and select
Insert->UserForm from the pop-up menu.

2 A new form appears under Forms in the VBA Project. In the form’s property
page, set the name property to frmFourier and the Caption property to
Spectral Analysis.

4 Usage Examples

4-16

Figure 4-6: Creating the Visual Basic Form

3 Now add a series of controls to the blank form to complete the dialog, as
summarized in the following table.

Control Type Control Name Properties Purpose

Frame Frame1 Caption = Input Data Groups all input
controls.

Label Label1 Caption = Input Data: Labels the RefEdit for
input data.

RefEdit refedtInput Selects range for input
data.

Spectral Analysis Example

4-17

Label Label2 Caption = Sampling Interval Labels the TextBox for
sampling interval.

CheckBox chkPlot Caption = Plot time domain
Signal and Power Spectral
Density

Plots input data and
power spectral density.

Frame Frame2 Caption = Output Data Groups all output
controls.

Label Label3 Caption = Frequency: Labels the RefEdit for
frequency output.

RefEdit refedtFreq Selects output range for
frequency points.

Label Label4 Caption = FFT - Real Part: Labels the RefEdit for
real part of FFT.

RefEdit refedtReal Selects output range for
real part of FFT of input
data.

Label Label5 Caption = FFT - Imaginary
Part:

Labels the RefEdit for
imaginary part of FFT.

RefEdit refedtImag Selects output range for
imaginary part of FFT of
input data.

Label Label6 Caption = Power Spectral
Density

Labels the RefEdit for
power spectral density.

RefEdit refedtPowSpect Selects output range for
power spectral density of
input data.

Control Type Control Name Properties Purpose

4 Usage Examples

4-18

Figure 4-7, Layout of Controls on Main Form, on page 4-19 shows the controls
layout on the form.

CommandButton btnOK Caption = OK

Default = True

Executes the function
and dismisses the dialog

CommandButton btnCancel Caption = Cancel

Cancel = True

Dismisses the dialog
without executing the
function.

Control Type Control Name Properties Purpose

Spectral Analysis Example

4-19

Figure 4-7: Layout of Controls on Main Form

When the form and controls are complete, right-click on the form and select
View Code from the pop-up menu. The following code listing shows the code to
implement. Note that this code references the control and variable names
listed above. If you have given different names for any of the controls or any
global variable, change this code to reflect those differences.

Label1

Label2

chkPlot

Label3

frmFourier

Label4

Label5

Label6

btnOK

Frame1

refedtInput

edtSample

Frame2

refedFreq

refedtReal

refedtImag

btnCancel

4 Usage Examples

4-20

'
'frmFourier Event handlers
'
Private Sub UserForm_Activate()
'UserForm Activate event handler. This function gets called before
'showing the form, and initializes all controls with values stored
'in global variables.
 On Error GoTo Handle_Error
 If theFourier Is Nothing Or theFFTData Is Nothing Then Exit Sub
 'Initialize controls with current state
 If Not InputData Is Nothing Then
 refedtInput.Text = InputData.Address
 End If
 edtSample.Text = Format(Interval)
 If Not Frequency Is Nothing Then
 refedtFreq.Text = Frequency.Address
 End If

If Not IsEmpty (theFFTData.Real) Then
If IsObject(theFFTData.Real) And TypeOf theFFTData.Real Is Range Then

refedtReal.Text = theFFTData.Real.Address
 End If
 End If

If Not IsEmpty (theFFTData.Imag) Then
If IsObject(theFFTData.Imag) And TypeOf theFFTData.Imag Is Range Then

refedtImag.Text = theFFTData.Imag.Address
 End If
 End If
 If Not PowerSpect Is Nothing Then
 refedtPowSpect.Text = PowerSpect.Address
 End If
 chkPlot.Value = bPlot
 Exit Sub
Handle_Error:
 MsgBox (Err.Description)
End Sub

Private Sub btnCancel_Click()
'Cancel button click event handler. Exits form without computing fft
'or updating variables.
 Unload Me
End Sub
Private Sub btnOK_Click()
'OK button click event handler. Updates state of all variables from controls
'and executes the computefft or plotfft method.
 Dim R As Range

 If theFourier Is Nothing Or theFFTData Is Nothing Then GoTo Exit_Form
 On Error Resume Next

Spectral Analysis Example

4-21

 'Process inputs
 Set R = Range(refedtInput.Text)
 If Err <> 0 Then
 MsgBox ("Invalid range entered for Input Data")
 Exit Sub
 End If
 Set InputData = R
 Interval = CDbl(edtSample.Text)
 If Err <> 0 Or Interval <= 0 Then
 MsgBox ("Sampling interval must be greater than zero")
 Exit Sub
 End If
 'Process Outputs
 Set R = Range(refedtFreq.Text)
 If Err = 0 Then
 Set Frequency = R
 End If
 Set R = Range(refedtReal.Text)
 If Err = 0 Then
 theFFTData.Real = R
 End If
 Set R = Range(refedtImag.Text)
 If Err = 0 Then
 theFFTData.Imag = R
 End If
 Set R = Range(refedtPowSpect.Text)
 If Err = 0 Then
 Set PowerSpect = R
 End If
 bPlot = chkPlot.Value
 'Compute the fft and optionally plot power spectral density
 If bPlot Then
 Call theFourier.plotfft(3, theFFTData, Frequency, PowerSpect,_

InputData, Interval)
 Else
 Call theFourier.computefft(3, theFFTData, Frequency, PowerSpect,_

InputData, Interval)
 End If
 GoTo Exit_Form
Handle_Error:
 MsgBox (Err.Description)
Exit_Form:
 Unload Me
End Sub

4 Usage Examples

4-22

Adding The Spectral Analysis Menu Item to Excel
The last step in the integration process adds a menu item to Excel so that you
can invoke the tool from Excel’s Tools menu. To do this you add event handlers
for the workbook’s AddinInstall and AddinUninstall events that install and
uninstall menu items. The menu item calls the LoadFourier function in the
FourierMain module. Follow these steps to implement the menu item:

1 Right-click on the ThisWorkbook item in the Visual Basic project window
and select View Code from the pop-up menu. See the next figure.

Figure 4-8: Adding a Menu Item to Excel

2 Place the code below into the ThisWorkbook object.

Spectral Analysis Example

4-23

Private Sub Workbook_AddinInstall()
'Called when Addin is installed
 Call AddFourierMenuItem
End Sub

Private Sub Workbook_AddinUninstall()
'Called when Addin is uninstalled
 Call RemoveFourierMenuItem
End Sub

Private Sub AddFourierMenuItem()
 Dim ToolsMenu As CommandBarPopup
 Dim NewMenuItem As CommandBarButton

 'Remove if already exists
 Call RemoveFourierMenuItem
 'Find Tools menu
 Set ToolsMenu = Application.CommandBars(1).FindControl(ID:=30007)
 If ToolsMenu Is Nothing Then Exit Sub
 'Add Spectral Analysis menu item
 Set NewMenuItem = ToolsMenu.Controls.Add(Type:=msoControlButton)
 NewMenuItem.Caption = "Spectral Analysis..."
 NewMenuItem.OnAction = "LoadFourier"
End Sub

Private Sub RemoveFourierMenuItem()
Dim CmdBar As CommandBar
Dim Ctrl As CommandBarControl
On Error Resume Next
'Find tools menu and remove Spectral Analysis menu item
Set CmdBar = Application.CommandBars(1)
Set Ctrl = CmdBar.FindControl(ID:=30007)
Call Ctrl.Controls("Spectral Analysis...").Delete
End Sub

Saving the Add-in
Name the add-in Spectral Analysis and follow these steps to save it:

1 From the main menu in Excel, select File->Properties.

2 When the Workbook Properties dialog appears, select the Summary tab
and enter Spectral Analysis as the workbook title.

3 Click OK to save the edits.

4 Usage Examples

4-24

4 Select File->Save As from the Excel main menu.

5 When the Save As dialog appears, select Microsoft Excel Add-In (*.xla) as
the file type.

6 Enter Fourier.xla as the file name and click Save to save the add-in.

Testing The Add-in
Before distributing the add-in, test it with a sample problem. Spectral analysis
is commonly used to find the frequency components of a signal buried in a noisy
time domain signal. In this example you will create a data representation of a
signal containing two distinct components and add to it a random component.
This data along with the output will be stored in columns of an Excel
worksheet, and you will plot the time-domain signal along with the power
spectral density.

Follow the steps outlined below to create the test problem:

1 Start a new session of Excel with a blank workbook.

2 Select Tools->Add-Ins from the main menu.

3 When the Add-Ins dialog comes up, click Browse.

4 Browse to the Fourier.xla file click OK.

5 The Spectral Analysis add-in appears in the available Add-Ins list and is
checked.

6 Click OK to load the add-in.

This add-in installs a menu item under the Excel Tools menu. You can display
the Spectral Analysis GUI by selecting Tools->Spectral Analysis. Before
invoking the add-in, create some data, in this case a signal with components at
15 and 40 Hz. Sample the signal for 10 seconds at a sampling rate of 0.01 sec.
Put the time points into column A and the signal points into column B.

Creating the Data
Follow these steps to create the data.

Spectral Analysis Example

4-25

1 Enter 0 for cell A1 in the current worksheet.

2 Click on cell A2 and type the formula "= A1 + 0.01".

3 Click and hold on the lower right hand corner of cell A2 and drag the formula
down the column to cell A1001. This procedure fills the range A1:A1001 with
the interval 0 to 10 incremented by 0.01.

4 Click on cell B1 and type the formula "= SIN(2*PI()*15*A1) +
SIN(2*PI()*40*A1) + RAND()". Repeat the drag procedure to copy this
formula to all cells in the range B1:B1001.

Running the Test
Using the column of data (column B), test the add-in as follows:

1 Select Tools->Spectral Analysis… from the main menu.

2 Click on the Input Data box.

3 Select the B1:B1001 range from the worksheet or type this address into
Input Data.

4 Click on the Sampling Interval box and type 0.01.

5 Check Plot time domain signal and power spectral density.

6 Enter C1:C1001 for frequency output, and likewise enter D1:D1001,
E1:E1001, and F1:F1001 for the FFT real and imaginary parts, and spectral
density.

7 Click OK to run the analysis.

The next figure shows the output.

4 Usage Examples

4-26

Figure 4-9: Worksheet with Inputs and Outputs for Test Problem

The power spectral density reveals the two signals at 15 and 40 Hz.

Spectral Analysis Example

4-27

Package the Component
As a final step, package the COM component and all supporting libraries into
a self-extracting executable. This package can now be installed onto other
computers that need to use the Spectral Analysis component. You will also
need to copy the Fourier.xla file to any machine that will use this component
from inside Excel:

To package the component, follow these steps.

1 Return to comtool. If comtool has been dismissed, start it again and reload
the Fourier project.

2 Select Component->Package Component.

This command creates the Fourier.exe self-extracting executable. To install
this component onto another computer, copy the Fourier.exe package to that
machine, run it from a command prompt, and follow the instructions.

4 Usage Examples

4-28

5

Function Reference

componentinfo

5-2

5componentinfoPurpose Query system registry

Syntax Info = componentinfo(ComponentName, MajorRevision, MinorRevision)

Arguments

Description Info = componentinfo(ComponentName, MajorRevision, MinorRevision)
returns registry and type information for a MATLAB COM Builder component.
componentinfo takes between zero and three inputs and returns an array of
structures representing all the registry and type information needed to load
and use the component.

When you supply a component name, MajorRevision and MinorRevision are
interpreted as shown below.

If you do not supply a component name, the function returns information for
all components installed on the system.

ComponentName (Optional) A MATLAB string providing the name of a
MATLAB COM Builder component. Names are case
sensitive. If this argument is not supplied, the function
returns information on all installed components.

MajorRevision (Optional) Component major revision number. If this
argument is not supplied, the function returns
information on all major revisions.

MinorRevision (Optional) Component minor revision number.
Default = 0.

Value of
MajorRevision

Information Returned

>0 Information on a specific major and minor revision

0 Information on the most recent revision

<0 Information on all versions

componentinfo

5-3

Examples Example 1.

 Info = componentinfo('mycomponent',1,0)

With a component name and major revision supplied, the function returns
information for revision 1.0 of mycomponent.

Example 2.

Info = componentinfo('mycomponent')

With a component name but no major revision supplied, the function returns
information for all revisions of mycomponent.

Example 3.

Info = componentinfo

Without any arguments supplied, the function returns information for all
installed components.

comtool

5-4

5comtoolPurpose Graphical user interface to MATLAB COM Builder

Syntax comtool

Description comtool displays the graphical user interface (GUI) for MATLAB COM
Builder.

A
Producing a COM Object
from MATLAB

“Capabilities” on page A-2 Describes the process of creating a COM object from
MATLAB input.

“Calling Conventions” on page A-7 Describes the calling conventions for MATLAB COM
Builder components.

A Producing a COM Object from MATLAB

A-2

Capabilities
MATLAB COM Builder enables you to integrate compiled MATLAB models
into Visual Basic, C++, or any other language that supports COM. Each
MATLAB COM Builder component is built as a stand-alone COM object. (COM
is an acronym for Component Object Model, Microsoft’s binary standard for
object interoperability. COM is the widely accepted standard for integration of
external functionality into Microsoft Office applications, such as Excel.) Each
MATLAB function included in a given component appears as a method of the
created COM class. The resulting call syntax from Visual Basic is
systematically mapped to the syntax of the original MATLAB function. This
mapping provides an intuitive bridge from MATLAB, where the functions are
created, to Visual Basic, where the functions are ultimately called.

MATLAB COM Builder provides robust data conversion and array formatting
to preserve the flexibility of MATLAB when calling from Visual Basic. Also
provided is custom error processing so that errors originating from MATLAB
functions are automatically manifested as Visual Basic exceptions. The
information returned with the error always references the original MATLAB
code, making debugging easy.

A simple versioning mechanism is also built into each component to help
manage deployment of multiple versions of the same component. Figure A-1
provides an overview of the process of creating a stand-alone COM object from
compiled MATLAB M-files.

Capabilities

A-3

Figure A-1: Creating a Stand-Alone COM Object with the MATLAB Compiler

The process of creating a MATLAB COM Builder component is completely
automatic. The user supplies a list of M-files to process and a few additional
pieces of information, i.e., the component name, the class names, and the
version number. The build process that follows involves code generation,
compiling, linking, and registration of the finished component.

Figure A-2 shows the files created at each step in the entire process, from
compilation to registration of the final DLL.

Note If you are reading this document online, click on Steps 1 - 5 in the
figure for an explanation of what takes place at each specific point in the
process.

myclass
object

Imyclass

IDispatch

ISupportErrorInfo

MATLAB
Compilerbar.m

foo.m

mycomponent_1_0.dllM-files

IUnknown

User-supplied Information:
Class name: myclass
Component name: mycomponent
Version number: 1.0

A Producing a COM Object from MATLAB

A-4

Figure A-2: M-Build Steps and Intermediate Files Created

 mcc -B cexel:mycomponent,myclass,1.0 foo.m bar.m

foo.h, foo.c
bar.h, bar.c

mycomponent_com.hpp,
mycomponent_com.cpp

mycomponent_idl.idl

foo.m, bar.m

mycomponent_dll.cpp mycomponent.def

Step 1. Code
Generation

IDL Compiler

mycomponent_idl.h,
mycomponent_idl_i.c

Step 2. Create
Interface
Definitions

mycomponent_idl.tlb

mycomponent.rc

Step 3. C++
Compilation C++ Compiler

Object Files

Step 3. C++
Compilation

Step 4. Linking
and Resource
Binding

Linker MATLAB Libraries

mycomponent_1_0.dll
(no type info)

Resource Compiler

Step 5. Component
Registration

mycomponent_1_0.dll
(includes type info)

MATLAB M-files

MATLAB Compiler

mclcomclass.h

Capabilities

A-5

Step 1. Code Generation
The first step in the build process generates all source code and other
supporting files needed to create the component.

The compiler first produces .c and .h files (foo.h, foo.c, bar.h, and bar.c),
representing the C-language translation of the M-code in the original M-files
(foo.m and bar.m). It also creates the main source file (mycomponent_dll.cpp)
containing the implementation of each exported function of the DLL. The
compiler additionally produces an Interface Description Language (IDL) file
(mycomponent_idl.idl), containing the specifications for the component’s type
library, interface, and class, with associated GUIDs. (GUID is an acronym for
Globally Unique Identifier, a 128-bit integer guaranteed always to be unique.)

Created next are the C++ class definition and implementation files
(mycomponent_com.hpp and mycomponent_com.cpp). In addition to these source
files, the compiler generates a DLL exports file (mycomponent.def), and a
resource script (mycomponent.rc).

Step 2. Create Interface Definitions
The second step of the build process invokes the IDL compiler on the IDL file
generated in step 1 (mycomponent_idl.idl), creating the interface header file
(mycomponent_idl.h), the interface GUID file (mycomponent_idl_i.c), and the
component type library file (mycomponent_idl.tlb). The interface header file
contains type definitions and function declarations based on the interface
definition in the IDL file. The interface GUID file contains the definitions of the
GUIDs from all interfaces in the IDL file. The component type library file
contains a binary representation of all types and objects exposed by the
component.

Step 3. C++ Compilation
The third step compiles all C/C++ source files generated in steps 1 and 2 into
object code. One additional file containing a set of C++ template classes
(mclcomclass.h) is included at this point. This file contains template
implementations of all necessary COM base classes, as well as error handling
and registration code. See “Compiler Requirements” for a list of supported C++
compilers.

A Producing a COM Object from MATLAB

A-6

Step 4. Linking and Resource Binding
The fourth step produces the finished DLL for the component. This step
invokes the linker on the object files generated in step 3 and the necessary
MATLAB libraries to produce a DLL component (mycomponent_1_0.dll). The
resource compiler is then invoked on the DLL, along with the resource script
generated in step 1, to bind the type library file generated in step 2 into the
completed DLL.

Step 5. Component Registration
The final build step registers the DLL on the system. See “Component
Registration” on page C-3 for information about this process.

Calling Conventions

A-7

Calling Conventions
This section describes the calling conventions for MATLAB COM Builder
components, including mappings from the original M-functions to Visual Basic.
A function call originating from a Visual Basic function into a compiled
M-function, as shown in Figure A-3.

Figure A-3: Function Call Routing

Producing a COM Class
Producing a COM class requires the generation of a class definition file in
Interface Description Language (IDL) as well as the associated C++ class
definition/implementation files. (See the Microsoft COM documentation for a
complete discussion of IDL and C++ coding rules for building COM objects.)
The builder automatically produces the necessary IDL and C/C++ code to build

COM Class.method

Visual Basic function/subroutine

Compiled M-function

sub foo(y1,y2,x1,x2)
.
.

function [y1,y2] =

A Producing a COM Object from MATLAB

A-8

each COM class in the component. This process is generally transparent to the
user.

IDL Mapping
The most generic MATLAB M-function is

function [Y1, Y2, , varargout] = foo(X1, X2, , varargin)

This function maps directly to the following IDL signature.

HRESULT foo([in] long nargout,
 [in,out] VARIANT* Y1,
 [in,out] VARIANT* Y2,
 .
 .
 [in,out] VARIANT* varargout,
 [in] VARIANT X1,
 [in] VARIANT X2,
 .
 .

[in] VARIANT varargin);

This IDL function definition is generated by producing a function with the
same name as the original M-function and an argument list containing all
inputs and outputs of the original plus one additional parameter, nargout.
(nargout is not produced if you compile an M-function containing no outputs.)
When present, the nargout parameter is an [in] parameter of type long. It is
always the first argument in the list. This parameter allows correct passage of
the MATLAB nargout parameter to the compiled M-code. Following the
nargout parameter, the outputs are listed in the order they appear on the left
side of the MATLAB function, and are tagged as [in,out], meaning that they
are passed in both directions. The function inputs are listed next, appearing in
the same order as they do on the right side of the original function. All inputs
are tagged as [in] parameters. When present, the optional
varargin/varargout parameters are always listed as the last input parameters
and the last output parameters. All parameters other than nargout are passed
as COM VARIANT types. “Data Conversion Rules” on page B-2lists the rules for
conversion between MATLAB arrays and COM VARIANTs.

Calling Conventions

A-9

Visual Basic Mapping
The Visual Basic mapping to the IDL signature shown above is

Sub foo(nargout As Long, _
 Y1 As Variant, _
 Y2 As Variant, _
 .
 .
 varargout As Variant, _
 X1 As Variant, _
 X2 As Varaint, _
 .
 .
 varargin As Variant)

(See the COM documentation for mappings to other languages.) Visual Basic
provides native support for COM VARIANTs with the Variant type, as well as
implicit conversions for all Visual Basic basic types to and from Variants. In
general, arrays/scalars of any Visual Basic basic type, as well as arrays/scalars
of Variant types, can be passed as arguments. MATLAB COM Builder
components also provide direct support for the Excel Range object, used by
Visual Basic for Applications to represent a range of cells in an Excel
worksheet. See the Visual Basic for Applications documentation included with
Microsoft Excel for more information on Visual Basic data types and Excel
Range manipulation.

A Producing a COM Object from MATLAB

A-10

B

Data Conversion

“Data Conversion Rules” on page B-2 Describes data conversion rules for MATLAB COM
Builder components

B Data Conversion

B-2

Data Conversion Rules
This section describes the data conversion rules for MATLAB COM Builder
components. COM Builder components are dual interface COM objects that
support COM Automation compatible data types. When a method is invoked on
a COM Builder component, the input parameters are converted to MATLAB
internal array format and passed to the compiled MATLAB function. When the
function exits, the output parameters are converted from MATLAB internal
array format to COM Automation types.

The COM client passes all input and output arguments in the compiled
MATLAB functions as type VARIANT. The COM VARIANT type is a union of
several simple data types. A type VARIANT variable can store a variable of any
of the simple types, as well as arrays of any of these values. The Win32
Application Program Interface (API) provides many functions for creating and
manipulating VARIANTs in C/C++, and Visual Basic provides native language
support for this type. See the Visual Studio documentation for definitions and
API support for COM VARIANTs. VARIANT variables are self describing and store
their type code as an internal field of the structure.

Table B-1 lists the VARIANT type codes supported by COM Builder components.
Table B-2 and Table B-3 list the data conversion rules between COM VARIANTs
and MATLAB arrays.

Table B-1: VARIANT Type Codes Supported

VARIANT Type Code
(C/C++)

C/C++ Type Variant
Type Code
(Visual
Basic)

Visual
Basic
Type

Definition

VT_EMPTY - vbEmpty - Uninitialized VARIANT

VT_I1 char - - Signed one-byte
character

VT_UI1 unsigned char vbByte Byte Unsigned one-byte
character

VT_I2 short vbInteger Integer Signed two-byte integer

Data Conversion Rules

B-3

VT_UI2 unsigned short - - Unsigned two-byte
integer

VT_I4 long vbLong Long Signed four-byte integer

VT_UI4 unsigned long - - Unsigned four-byte
integer

VT_R4 float vbSingle Single IEEE four-byte
floating-point value

VT_R8 double vbDouble Double IEEE eight-byte
floating-point value

VT_CY CY+ vbCurrency Currency Currency value (64-bit
integer, scaled by
10,000)

VT_BSTR BSTR+ vbString String String value

VT_ERROR SCODE+ vbError - A HRESULT (Signed
four-byte integer
representing a COM
error code)

VT_DATE DATE+ vbDate Date Eight-byte floating point
value representing date
and time

VT_INT int - - Signed integer;
equivalent to type int

VT_UINT unsigned int - - Unsigned integer;
equivalent to type
unsigned int

Table B-1: VARIANT Type Codes Supported (Continued)

VARIANT Type Code
(C/C++)

C/C++ Type Variant
Type Code
(Visual
Basic)

Visual
Basic
Type

Definition

B Data Conversion

B-4

VT_DECIMAL DECIMAL+ vbDecimal - 96-bit (12-byte)
unsigned integer, scaled
by a variable power of 10

VT_BOOL VARIANT_BOOL+ vbBoolean Boolean Two-byte Boolean value
(0xFFFF = True; 0x0000
= False)

VT_DISPATCH IDispatch* vbObject Object IDispatch* pointer to
an object

VT_VARIANT VARIANT+ vbVariant Variant VARIANT (can only be
specified if combined
with VT_BYREF or
VT_ARRAY)

<anything>|VT_ARRAY Bitwise combine
VT_ARRAY with any basic
type to declare as an
array

<anything>|VT_BYREF Bitwise combine
VT_BYREF with any basic
type to declare as a
reference to a value

+ Denotes Windows-specific type. Not part of standard C/C++.

Table B-1: VARIANT Type Codes Supported (Continued)

VARIANT Type Code
(C/C++)

C/C++ Type Variant
Type Code
(Visual
Basic)

Visual
Basic
Type

Definition

Data Conversion Rules

B-5

Table B-2: MATLAB to COM VARIANT Conversion Rules

MATLAB Data Type VARIANT type for Scalar
Data

VARIANT type for
Array Data

Comments

cell A 1-by-1 cell array
converts to a single
VARIANT with a type
conforming to the
conversion rule for the
MATLAB data type of
the cell contents.

A multidimensional
cell array converts to a
VARIANT of type
VT_VARIANT|VT_ARRAY
with the type of each
array member
conforming to the
conversion rule for the
MATLAB data type of
the corresponding cell.

structure VT_DISPATCH VT_DISPATCH A MATLAB struct
array is converted
to an MWStruct
object. (See “Class
MWStruct” on
page D-14.) This
object is passed as a
VT_DISPATCH type.

B Data Conversion

B-6

char A 1-by-1 char matrix
converts to a VARIANT of
type VT_BSTR with string
length = 1.

A 1-by-L char matrix
is assumed to
represent a string of
length L in MATLAB.
This case converts to a
VARIANT of type
VT_BSTR with a string
length = L. char
matrices of more than
one row, or of a higher
dimensionality
convert to a VARIANT of
type
VT_BSTR|VT_ARRAY.
Each string in the
converted array is of
length 1 and
corresponds to each
character in the
original matrix.

Arrays of strings
are not supported
as char matrices.
To pass an array of
strings, use a cell
array of 1-by-L
char matrices.

sparse VT_DISPAATCH VT_DISPATCH A MATLAB sparse
array is converted
to an MWSparse
object. (See “Class
MWSparse” on
page D-23.) This
object is passed as a
VT_DISPATCH type.

Table B-2: MATLAB to COM VARIANT Conversion Rules (Continued)

MATLAB Data Type VARIANT type for Scalar
Data

VARIANT type for
Array Data

Comments

Data Conversion Rules

B-7

double A real 1-by-1 double
matrix converts to a
VARIANT of type VT_R8. A
complex 1-by-1 double
matrix converts to a
VARIANT of type
VT_DISPATCH.

A real
multidimensional
double matrix
converts to a VARIANT
of type
VT_R8|VT_ARRAY. A
complex
multidimensional
double matrix
converts to a VARIANT
of type VT_DISPATCH.

Complex arrays are
passed to and from
compiled
M-functions using
the MWComplex
class. See “Class
MWComplex” on
page D-21.)

single A real 1-by-1 single
matrix converts to a
VARIANT of type VT_R4. A
complex 1-by-1 single
matrix converts to a
VARIANT of type
VT_DISPATCH.

A real
multidimensional
single matrix converts
to a VARIANT of type
VT_R4|VT_ARRAY. A
complex
multidimensional
single matrix converts
to a VARIANT of type
VT_DISPATCH.

Complex arrays are
passed to and from
compiled
M-functions using
the MWComplex
class. See “Class
MWComplex” on
page D-21.)

int8 A real 1-by-1 int8 matrix
converts to a VARIANT of
type VT_I1. A complex
1-by-1 int8 matrix
converts to a VARIANT of
type VT_DISPATCH.

A real
multidimensional
int8 matrix converts
to a VARIANT of type
VT_I1|VT_ARRAY. A
complex
multidimensional
int8 matrix converts
to a VARIANT of type
VT_DISPATCH.

Complex arrays are
passed to and from
compiled
M-functions using
the MWComplex
class. See “Class
MWComplex” on
page D-21.)

Table B-2: MATLAB to COM VARIANT Conversion Rules (Continued)

MATLAB Data Type VARIANT type for Scalar
Data

VARIANT type for
Array Data

Comments

B Data Conversion

B-8

uint8 A real 1-by-1 uint8
matrix converts to a
VARIANT of type VT_UI1.
A complex 1-by-1 uint8
matrix converts to a
VARIANT of type
VT_DISPATCH.

A real
multidimensional
uint8 matrix converts
to a VARIANT of type
VT_UI1|VT_ARRAY.A
complex
multidimensional
uint8 matrix converts
to a VARIANT of type
VT_DISPATCH.

Complex arrays are
passed to and from
compiled
M-functions using
the MWComplex
class. See “Class
MWComplex” on
page D-21.)

int16 A real 1-by-1 int16
matrix converts to a
VARIANT of type VT_I2. A
complex 1-by-1 int16
matrix converts to a
VARIANT of type
VT_DISPATCH.

A real
multidimensional
int16 matrix converts
to a VARIANT of type
VT_I2|VT_ARRAY. A
complex
multidimensional
int16 matrix converts
to a VARIANT of type
VT_DISPATCH.

Complex arrays are
passed to and from
compiled
M-functions using
the MWComplex
class. See “Class
MWComplex” on
page D-21.)

uint16 A real 1-by-1 uint16
matrix converts to a
VARIANT of type VT_UI2.
A complex 1-by-1 uint16
matrix converts to a
VARIANT of type
VT_DISPATCH.

A real
multidimensional
uint16 matrix
converts to a VARIANT
of type
VT_UI2|VT_ARRAY. A
complex
multidimensional
uint16 matrix
converts to a VARIANT
of type VT_DISPATCH.

Complex arrays are
passed to and from
compiled
M-functions using
the MWComplex
class. See “Class
MWComplex” on
page D-21.)

Table B-2: MATLAB to COM VARIANT Conversion Rules (Continued)

MATLAB Data Type VARIANT type for Scalar
Data

VARIANT type for
Array Data

Comments

Data Conversion Rules

B-9

int32 A 1-by-1 int32 matrix
converts to a VARIANT of
type VT_I4. A complex
1-by-1 int32 matrix
converts to a VARIANT of
type VT_DISPATCH.

A multidimensional
int32 matrix converts
to a VARIANT of type
VT_I4|VT_ARRAY. A
complex
multidimensional
int32 matrix converts
to a VARIANT of type
VT_DISPATCH.

Complex arrays are
passed to and from
compiled
M-functions using
the MWComplex
class. See “Class
MWComplex” on
page D-21.)

uint32 A 1-by-1 uint32 matrix
converts to a VARIANT of
type VT_UI4. A complex
1-by-1 uint32 matrix
converts to a VARIANT of
type VT_DISPATCH.

A multidimensional
uint32 matrix
converts to a VARIANT
of type
VT_UI4|VT_ARRAY. A
complex
multidimensional
uint32 matrix
converts to a VARIANT
of type VT_DISPATCH.

Complex arrays are
passed to and from
compiled
M-functions using
the MWComplex
class. See “Class
MWComplex” on
page D-21.)

Function handle VT_EMPTY VT_EMPTY Not supported

Java class VT_EMPTY VT_EMPTY Not supported

User class VT_EMPTY VT_EMPTY Not supported

logical VT_Bool VT_Bool|VT_ARRAY

Table B-2: MATLAB to COM VARIANT Conversion Rules (Continued)

MATLAB Data Type VARIANT type for Scalar
Data

VARIANT type for
Array Data

Comments

B Data Conversion

B-10

Table B-3: COM VARIANT to MATLAB Conversion Rules

VARIANT Type MATLAB Data
Type (scalar or
array data)

Comments

VT_EMPTY N/A Empty array created.

VT_I1 int8

VT_UI1 uint8

VT_I2 int16

VT_UI2 uint16

VT_I4 int32

VT_UI4 uint32

VT_R4 single

VT_R8 double

VT_CY double

VT_BSTR char A VARIANT of type VT_BSTR converts to a 1-by-L
MATLAB char array, where L = the length of the
string to be converted. A VARIANT of type
VT_BSTR|VT_ARRAY converts to a MATLAB cell
array of 1-by-L char arrays.

VT_ERROR int32

Data Conversion Rules

B-11

VT_DATE double 1. VARIANT dates are stored as doubles starting at
midnight Dec. 31, 1899. MATLAB dates are
stored as doubles starting at 0/0/00 00:00:00.
Therefore, a VARIANT date of 0.0 maps to a
MATLAB numeric date of 693960.0. VARIANT
dates are converted to MATLAB double types and
incremented by 693960.0.
2. VARIANT dates can be optionally converted to
strings. See “Data Conversion Flags” on
page B-14 for more information on type coercion.

VT_INT int32

VT_UINT unit32

VT_DECIMAL double

VT_BOOL logical

VT_DISPATCH (varies) IDispatch* pointers are treated within the
context of what they point to. Objects must be
supported types with known data extraction and
conversion rules or expose a generic “Value”
property that points to a single VARIANT type.
Data extracted from an object is converted based
upon the rules for the particular VARIANT
obtained. Currently, support exists for Excel
Range objects as well as COM Builder types
MWStruct, MWComplex, MWSparse, and MWArg. See
“Utility Library Classes” on page D-3 for
information on COM Builder types.

Table B-3: COM VARIANT to MATLAB Conversion Rules (Continued)

VARIANT Type MATLAB Data
Type (scalar or
array data)

Comments

B Data Conversion

B-12

Array Formatting Flags
MATLAB COM Builder components have flags that control how array data is
formatted in both directions. Generally, you should develop client code that
matches the intended inputs and outputs of the MATLAB functions with the
corresponding methods on the compiled COM objects, in accordance with the
rules listed in Table B-2 and Table B-3. In some cases this is not possible, e.g.,
when existing MATLAB code is used in conjunction with a third party product
like Excel.

<anything>|VT_BYREF (varies) Pointers to any of the basic types are processed
according to the rules for what they point to. The
resulting MATLAB array contains a deep copy of
the values.

<anything>|VT_ARRAY (varies) Multidimensional VARIANT arrays convert to
multidimensional MATLAB arrays, each element
converted according to the rules for the basic
types. Multidimensional VARIANT arrays of type
VT_VARIANT|VT_ARRAY convert to
multidimensional cell arrays, each cell converted
according to the rules for that specific type.

Table B-3: COM VARIANT to MATLAB Conversion Rules (Continued)

VARIANT Type MATLAB Data
Type (scalar or
array data)

Comments

Data Conversion Rules

B-13

Table B-4 shows the array formatting flags.

Table B-4: Array Formatting Flags

Flag Description

InputArrayFormat Defines the array formatting rule used on input arrays. An input array
is a VARIANT array, created by the client, sent as an input parameter to
a method call on a compiled COM object. Valid values for this flag are
mwArrayFormatAsIs, mwArrayFormatMatrix, and mwArrayFormatCell.

mwArrayFormatAsIs passes the array unchanged.

mwArrayFormatMatrix (default) formats all arrays as matrices. When
the input VARIANT is of type VT_ARRAY|<type>, where <type> is any
numeric type, this flag has no effect. When the input VARIANT is of type
VT_VARIANT|VT_ARRAY, VARIANTs in the array are examined. If they are
single-valued and homogeneous in type, a MATLAB matrix of the
appropriate type is produced instead of a cell array.

mwArrayFormatCell interprets all arrays as MATLAB cell arrays.

InputArrayIndFlag Sets the input array indirection level used with the InputArrayFormat
flag (applicable only to nested arrays, i.e., VARIANT arrays of VARIANTs,
which themselves are arrays). The default value for this flag is zero,
which applies the InputArrayFormat flag to the outermost array. When
this flag is greater than zero, e.g., equal to N, the formatting rule
attempts to apply itself to the Nth level of nesting.

OutputArrayFormat Defines the array formatting rule used on output arrays. An output
array is a MATLAB array, created by the compiled COM object, sent as
an output parameter from a method call to the client. The values for
this flag, mwArrayFormatAsIs, mwArrayFormatMatrix, and
mwArrayFormatCell, cause the same behavior as the corresponding
InputArrayFormat flag values.

OutputArrayIndFlag (Applies to nested cell arrays only.) Output array indirection level used
with the OutputArrayFormat flag. This flag works exactly like
InputArrayIndFlag.

B Data Conversion

B-14

Data Conversion Flags
MATLAB COM Builder components contain flags to control the conversion of
certain VARIANT types to MATLAB types.

CoerceNumericToType
This flag tells the data converter to convert all numeric VARIANT data to one
specific MATLAB type. VARIANT type codes affected by this flag are VT_I1,
VT_UI1, VT_I2, VT_UI2, VT_I4, VT_UI4, VT_R4, VT_R8, VT_CY, VT_DECIMAL,
VT_INT, VT_UINT, VT_ERROR, VT_BOOL, and VT_DATE. Valid values for this flag
are mwTypeDefault, mwTypeChar, mwTypeDouble, mwTypeSingle,
mwTypeLogical, mwTypeInt8, mwTypeUint8, mwTypeInt16, mwTypeUint16,
mwTypeInt32, and mwTypeUint32. The default for this flag, mwTypeDefault,
converts numeric data according to the rules listed in Table B-3.

InputDateFormat
This flag tells the data converter how to convert VARIANT dates to MATLAB
dates. Valid values for this flag are mwDateFormatNumeric (default) and
mwDateFormatString. The default converts VARIANT dates according to the rule
listed in Table B-3. mwDateFormatString converts a VARIANT date to its string
representation. This flag only affects VARIANT type code VT_DATE.

OutputAsDate As Boolean
This flag instructs the data converter to process an output argument as a date.
By default, numeric dates that are output parameters from compiled MATLAB
functions are passed as Doubles that need to be decremented by the COM date

AutoResizeOutput (Applies to Excel ranges only.) When the target output from a method
call is a range of cells in an Excel worksheet and the output array size
and shape is not known at the time of the call, set this flag to True to
resize each Excel range to fit the output array.

TransposeOutput Set this flag to True to transpose the output arguments. Useful when
calling an COM Builder component from Excel where the MATLAB
function returns outputs as row vectors, and you want the data in
columns.

Table B-4: Array Formatting Flags (Continued)

Flag Description

Data Conversion Rules

B-15

bias (693960) as well as coerced to COM dates. Set this flag to True to convert
all output values of type Double.

DateBias As Long
This flag sets the date bias for performing COM to MATLAB numeric date
conversions. The default value of this property is 693960, which represents the
difference between the COM Date type and MATLAB numeric dates. This flag
allows existing MATLAB code that already performs the increment of numeric
dates by 693960 to be used unchanged with COM Builder components. To
process dates with such code, set this property to 0.

B Data Conversion

B-16

C
Registration and
Versioning

“Overview” on page C-2 Describes the contents of this section.

“Component Registration”
on page C-3

Describes the registration process for MATLAB COM Builder
components.

“Versioning” on page C-5 Describes the versioning mechanism that makes building and
deploying multiple versions of the same component easy to implement.

“Obtaining Registry
Information” on page C-6

Describes the use of the MATLAB function componentinfo to query the
system registry for any installed COM Builder components.

C Registration and Versioning

C-2

Overview
This section describes the registration and versioning of MATLAB COM
Builder components and how to retrieve information about any installed
component from the system registry.

Component Registration

C-3

Component Registration
When the MATLAB COM Builder creates a component, it automatically
generates a binary file called a type library. As a final step of the build, this file
is bound with the resulting DLL as a resource.

Self-Registering Components
MATLAB COM Builder components are all self-registering. A self-registering
component contains all the necessary code to add or remove a full description
of itself to or from the system registry. The mwregsvr utility registers
self-registering DLLs. For example, to register a component called
mycomponent_1_0.dll, issue this command at the DOS command prompt.

mwregsvr mycomponent_1_0.dll

When mwregsvr completes the registration process, it displays a message
indicating success or failure. Similarly, the command

mwregsvr /u mycomponent_1_0.dll

unregisters the component.

An COM Builder component installed onto a particular machine must be
registered with mwregsvr. If you move a component into a different directory
on the same machine, you must repeat the registration process. When deleting
a component from a specific machine, first unregister it to ensure that the
registry does not retain erroneous information.

Globally Unique Identifiers
Information is stored in the registry as keys with one or more associated named
values. The keys themselves have values of primarily two types: readable
strings and GUIDs. GUID is an acronym for Globally Unique Identifier, a
128-bit integer guaranteed always to be unique. The MATLAB Compiler
automatically generates GUIDs for COM classes, interfaces, and type libraries
that are defined within a component at build time, and codes these keys into
the component’s self-registration code. The interface to the system registry is
directory based, and COM-related information is stored under a top-level key
called HKEY_CLASSES_ROOT. Under HKEY_CLASSES_ROOT are several other keys
under which the component writes its information. These keys are defined in
Table C-1.

C Registration and Versioning

C-4

Table C-1: Keys

Key Definition

HKEY_CLASSES_ROOT\CLSID Information about COM classes on the system. Each
component creates a new key under
HKEY_CLASSES_ROOT\CLSID for each of its COM classes.
The key created has a value of the GUID that has been
assigned the class and contains several subkeys with
information about the class.

HKEY_CLASSES_ROOT\Interface Information about COM interfaces on the system. Each
component creates a new key under
HKEY_CLASSES_ROOT\Interface for each interface it
defines. This key has the value of the GUID assigned to
the interface and contains subkeys with information
about the interface.

HKEY_CLASSES_ROOT\TypeLib Information about type libraries on the system. Each
component creates a key for its type library with the
value of the GUID assigned to it. Under this key a new
key is created for each version of the type library.
Therefore, new versions of type libraries with the same
name reuse the original GUID but create a new subkey
for the new version.

HKEY_CLASSES_ROOT\<ProgID>,
HKEY_CLASSES_ROOT\<VerIndProgID>

These two keys are created for the component’s
Program ID and Version Independent Program ID.
These keys are constructed from strings of the form
<component-name>.<class-name> and
<component-name>.<class-name><version-number>.
These keys are useful for creating a class instance from
the component and class names instead of the GUIDs.

Versioning

C-5

Versioning
MATLAB COM Builder components support a simple versioning mechanism
designed to make building and deploying multiple versions of the same
component easy to implement. The version number of a component appears as
part of the DLL name, as well as part of the version-dependent ID in the system
registry.

When a component is created, you can specify a version number (default = 1.0).
During the development of a specific version of a component, the version
number should be kept constant. When this is done, the MATLAB Compiler, in
certain cases, reuses type library, class, and interface GUIDs for each
subsequent build of the component. This avoids the creation of an excessive
number of registry keys for the same component during multiple builds, as
occurs if new GUIDs are generated for each build.

When a new version number is introduced, the MATLAB Compiler generates
new class and interface GUIDs so that the system recognizes them as distinct
from previous versions, even if the class name is the same. Therefore, once you
deploy a built component, use a new version number for any changes made to
the component. This ensures that after you deploy the new component, it is
easy to manage the two versions.

The MATLAB Compiler implements the versioning rules for a specific
component name, class name, and version number by querying the system
registry for an existing component with the same name.

• If an existing component has the same version, it uses the GUID of the
existing component’s type library. If the name of the new class matches the
previous version, it reuses the class and interface GUIDs. If the class names
do not match, it generates new GUIDs for the new class and interface.

• If it finds an existing component with a different version, it uses the existing
type library GUID and creates a new subkey for the new version number. It
generates new GUIDs for the new class and interface.

• If it does not find an existing component of the specified name, it generates
new GUIDs for the component’s type library, class, and interface.

C Registration and Versioning

C-6

Obtaining Registry Information
MATLAB COM Builder includes the MATLAB function componentinfo to
query the system registry for any installed COM Builder components. The
function can be executed inside MATLAB with the component name, major
version number, and minor version number as arguments. It returns an array
of structures with the requested information. Calling componentinfo with no
arguments returns all COM Builder components installed on the machine.

The next example queries the registry for a component named mycomponent
and a version of 1.0. This component has four methods: mysum, randvectors,
getdates, and myprimes, two properties: m and n, and one event: myevent.

Info = componentinfo('mycomponent', 1, 0)

Info =

Name: 'mycomponent'
 TypeLib: 'mycomponent 1.0 Type Library'

LIBID: '{3A14AB34-44BE-11D5-B155-00D0B7BA7544}'
MajorRev: 1
MinorRev: 0
FileName: 'D:\Work\ mycomponent\distrib\mycomponent_1_0.dll'
Interfaces: [1x1 struct]
CoClasses: [1x1 struct]

Info.Interfaces

ans =

 Name: 'Imyclass'
IID: '{3A14AB36-44BE-11D5-B155-00D0B7BA7544}'

Info.CoClasses

ans =

Name: 'myclass'
CLSID: '{3A14AB35-44BE-11D5-B155-00D0B7BA7544}'
ProgID: 'mycomponent.myclass.1_0'

VerIndProgID: 'mycomponent.myclass'

Obtaining Registry Information

C-7

InprocServer32:'D:\Work\mycomponent\distrib\mycomponent_1_0.dll'
Methods: [1x4 struct]

Properties: {'m', 'n'}
Events: [1x1 struct]

Info.CoClasses.Events.M

ans =

function myevent(x, y)

Info.CoClasses.Methods

ans =

1x4 struct array with fields:
 IDL
 M
 C
 VB

Info.CoClasses.Methods.M

ans =

function [y] = mysum(varargin)

ans =

function [varargout] = randvectors()

ans =

function [x] = getdates(n, inc)

ans =

function [p] = myprimes(n)

C Registration and Versioning

C-8

The returned structure contains fields corresponding to the most important
information from the registry and type library for the component. These fields
are defined in Table C-2.

Table C-2: Registry Information Returned by componentinfo

Field Description

Name Component name

TypeLib Component type library

LIBID Component type library GUID

MajorRev Major version number

MinorRev Minor version number

FileName Type library filename and path. Since all MATLAB
COM Builder components have the type library bound
into the DLL, this file name is the same as the DLL
name and path.

Obtaining Registry Information

C-9

Interfaces An array of structures defining all interface definitions
in the type library. Each structure contains two fields:

• Name - Interface name

• IID - Interface GUID

Table C-2: Registry Information Returned by componentinfo (Continued)

Field Description

C Registration and Versioning

C-10

CoClasses An array of structures defining all COM classes in the
component. Each structure contains these fields:

• Name - Class name

• CLSID - GUID of the class

• ProgID - Version dependent program ID

• VerIndProgID - Version independent program ID

• InprocServer32 - Full name and path to component
DLL

• Methods - A structure containing function prototypes
of all class methods defined for this interface. This
structure contains four fields:

- IDL - An array of Interface Description Language
function prototypes

- M - An array of MATLAB function prototypes

- C - An array of C-language function prototypes

- VB - An array of Visual Basic function prototypes

• Properties - A cell array containing the names of all
class properties.

• Events - A structure containing function prototypes
of all events defined for this class. This structure
contains four fields:

- IDL - An array of IDL (Interface Description
Language) function prototypes.

- M - An array of MATLAB function prototypes.

- C - An array of C-Language function prototypes.

- VB - An array of Visual Basic function prototypes

Table C-2: Registry Information Returned by componentinfo (Continued)

Field Description

D

Utility Library

“Introduction” on page D-2 Overview of the MWComUtil utility library

“Utility Library Classes” on page D-3 Discusses the classes within the MWComUtil utility library

“Enumerations” on page D-28 Describes the enumerations (sets of constants)

D Utility Library

D-2

Introduction
This section describes the MWComUtil library provided with the MATLAB COM
Builder. This library is freely distributable and includes several functions used
in array processing, as well as type definitions used in data conversion. This
library is contained in the file mwcomutil.dll. It must be registered once on
each machine that uses COM Builder components.

Register the MWComUtil library at the DOS command prompt with the
command

mwregsvr mwcomutil.dll

The MWComUtil library includes seven classes (see “Utility Library Classes” on
page D-3) and three enumerated types (see “Enumerations” on page D-28).
Before using these types, you must make explicit references to the MWComUtil
type libraries in the Visual Basic IDE. To do this select Tools->References…
from the main menu of the Visual Basic editor. The References dialog box
appears with a scrollable list of available type libraries. From this list select
MWComUtil 1.0 Type Library and click OK.

Utility Library Classes

D-3

Utility Library Classes
The COM Builder Utility Library provides several classes:

• “Class MWUtil” on page D-3

• “Class MWFlags” on page D-8

• “Class MWStruct” on page D-14

• “Class MWField” on page D-20

• “Class MWComplex” on page D-21

• “Class MWSparse” on page D-23

• “Class MWArg” on page D-26

Class MWUtil
The MWUtil class contains a set of static utility methods used in array
processing. This class is implemented internally as a singleton. It is most
efficient to declare one variable of this type in global scope within each module
that uses it. The methods of MWUtil are

• “Sub MWInitApplication(pApp As Object)” on page D-3

• “Sub MWPack(pVarArg, [Var0], [Var1], … ,[Var31])” on page D-4

• “Sub MWUnpack(VarArg, [nStartAt As Long], [bAutoResize As Boolean =
False], [pVar0], [pVar1], ..., [pVar31])” on page D-5

• “Sub MWDate2VariantDate(pVar)” on page D-7

The function prototypes use Visual Basic syntax.

Sub MWInitApplication(pApp As Object)
Used with MATLAB Excel Builder only.

Parameters.

Return Value. None.

Argument Type Description

pApp Object A valid reference to the current Excel application

D Utility Library

D-4

Sub MWPack(pVarArg, [Var0], [Var1], … ,[Var31])
Packs a variable length list of Variant arguments into a single Variant array.
This function is typically used for creating a varargin cell from a list of
separate inputs. Each input in the list is added to the array only if it is
nonempty and nonmissing. (In Visual Basic, a missing parameter is denoted by
a Variant type of vbError with a value of &H80020004.)

Parameters.

Return Value. None.

Remarks. This function always frees the contents of pVarArg before processing
the list.

Example. This example uses MWPack in a formula function to produce a
varargin cell to pass as an input parameter to a method compiled from a
MATLAB function with the signature

function y = mysum(varargin)
 y = sum([varargin{:}]);

The function returns the sum of the elements in varargin. Assume that this
function is a method of a class named myclass that is included in a component
named mycomponent with a version of 1.0. The Visual Basic function allows up
to 10 inputs, and returns the result y. If an error occurs, the function returns
the error string.

Function mysum(Optional V0 As Variant, _
Optional V1 As Variant, _
Optional V2 As Variant, _
Optional V3 As Variant, _
Optional V4 As Variant, _
Optional V5 As Variant, _

Argument Type Description

pVarArg Variant Receives the resulting array

[Var0], [Var1], Variant Optional list of Variants to pack into
the array. From 0 to 32 arguments can
be passed.

Utility Library Classes

D-5

Optional V6 As Variant, _
Optional V7 As Variant, _
Optional V8 As Variant, _
Optional V9 As Variant) As Variant

Dim y As Variant
Dim varargin As Variant
Dim aClass As Object
Dim aUtil As Object

On Error Goto Handle_Error
Set aClass = CreateObject("mycomponent.myclass.1_0")
Set aUtil = CreateObject("MWComUtil.MWUtil")
Call aUtil.MWPack(varargin,V0,V1,V2,V3,V4,V5,V6,V7,V8,V9)
Call aClass.mysum(1, y, varargin)
mysum = y
Exit Function

Handle_Error:
mysum = Err.Description

End Function

Sub MWUnpack(VarArg, [nStartAt As Long], [bAutoResize As Boolean =
False], [pVar0], [pVar1], ..., [pVar31])
Unpacks an array of Variants into individual Variant arguments. This
function provides the reverse functionality of MWPack and is typically used to
process a varargout cell into individual Variants.

Parameters.

Argument Type Description

VarArg Variant Input array of Variants to be
processed

nStartAt Long Optional starting index
(zero-based) in the array to
begin processing. Default = 0.

D Utility Library

D-6

Return Value. None.

Remarks. This function can process a Variant array in one single call or
through multiple calls using the nStartAt parameter.

Example. This example uses MWUnpack to process a varargout cell into four
output arguments. The varargout parameter is supplied from a method that
has been compiled from the MATLAB function.

function varargout = randvectors
 for i=1:nargout
 varargout{i} = rand(i,1);
 end

This function produces a sequence of nargout random column vectors, with the
length of the ith vector equal to i. Assume that this function is included in a
class named myclass that is included in a component named mycomponent with
a version of 1.0. If an error occurs, a message box displays the error text.

Sub GenVectors(v1 As Variant, v2 As Variant, _
v3 As Variant, v4 As Variant)

 Dim aClass As Object
 Dim aUtil As Object

bAutoResize Boolean Optional auto-resize flag. If this
flag is True, any Excel range
output arguments are resized to
fit the dimensions of the
Variant to be copied. The
resizing process is applied
relative to the upper left corner
of the supplied range. Default =
False.

[pVar0],[pVar1], ... Variant Optional list of Variants to
receive the array items
contained in VarArg. From 0 to
32 arguments can be passed.

Argument Type Description

Utility Library Classes

D-7

 Dim v As Variant

 On Error GoTo Handle_Error
 Set aClass = CreateObject("mycomponent.myclass.1_0")
 Set aUtil = CreateObject("MWComUtil.MWUtil")
 Call aClass.randvectors(4, v)
 Call aUtil.MWUnpack(v,0, ,v1 ,v2 ,v3 ,v4)
 Exit Sub
Handle_Error:
 MsgBox (Err.Description)
End Sub

Sub MWDate2VariantDate(pVar)
Converts output dates from MATLAB to Variant dates.

Parameters.

Return Value. None.

Remarks. MATLAB handles dates as double precision floating point numbers
with 0.0 representing 0/0/00 00:00:00 (See “Data Conversion Rules” on
page B-2 for more information on conversion between MATLAB and COM date
values). By default, numeric dates that are output parameters from compiled
MATLAB functions are passed as Doubles that need to be decremented by the
COM date bias as well as coerced to COM dates. The MWDate2VariantDate
method performs this transformation and additionally converts dates in string
form to COM date types.

Example. This example uses MWDate2VariantDate to process numeric dates
returned from a method compiled from the following MATLAB function.

function x = getdates(n, inc)
y = now;
for i=1:n

x(i,1) = y + (i-1)*inc;
end

Argument Type Description

pVar Variant Variant to be converted.

D Utility Library

D-8

This function produces an n-length column vector of numeric values
representing dates starting from the current date and time with each element
incremented by inc days. Assume that this function is included in a class
named myclass that is included in a component named mycomponent with a
version of 1.0. If an error occurs, a message box displays the error text.

Sub GenDates(Dates As Variant, num As Long, inc As Long)
 Dim aClass As Object
 Dim aUtil As Object

 On Error GoTo Handle_Error
 Set aClass = CreateObject("mycomponent.myclass.1_0")
 Set aUtil = CreateObject("MWComUtil.MWUtil")
 Call aClass.getdates(1, Dates, Cdbl(num), Cdbl(inc))
 Call aUtil.MWDate2VariantDate(Dates)
 Exit Sub
Handle_Error:
 MsgBox (Err.Description)
End Sub

Class MWFlags
The MWFlags class contains a set of array formatting and data conversion flags
(See “Data Conversion Rules” on page B-2 for more information on conversion
between MATLAB and COM Automation types). All MATLAB COM Builder
components contain a reference to an MWFlags object that can modify data
conversion rules at the object level. This class contains these properties:

• “Property ArrayFormatFlags As MWArrayFormatFlags” on page D-8

• “Property DataConversionFlags As MWDataConversionFlags” on page D-11

• “Sub Clone(ppFlags As MWFlags)” on page D-13

Property ArrayFormatFlags As MWArrayFormatFlags
The ArrayFormatFlags property controls array formatting (as a matrix or a cell
array) and the application of these rules to nested arrays. The
MWArrayFormatFlags class is a noncreatable class accessed through an
MWFlags class instance. This class contains six properties:

• “Property InputArrayFormat As mwArrayFormat” on page D-9

• “Property InputArrayIndFlag As Long” on page D-9

Utility Library Classes

D-9

• “Property OutputArrayFormat As mwArrayFormat” on page D-10

• “Property OutputArrayIndFlag As Long” on page D-10

• “Property AutoResizeOutput As Boolean” on page D-10

• “Property TransposeOutput As Boolean” on page D-11

Property InputArrayFormat As mwArrayFormat. This property of type mwArrayFormat
controls the formatting of arrays passed as input parameters to MATLAB COM
Builder class methods. The default value is mwArrayFormatMatrix. The
behaviors indicated by this flag are listed in the next table.

Property InputArrayIndFlag As Long. This property governs the level at which to
apply the rule set by the InputArrayFormat property for nested arrays (an
array of Variants is passed and each element of the array is an array itself). It
is not necessary to modify this flag for varargin parameters. The data
conversion code automatically increments the value of this flag by 1 for

Table D-1: Array Formatting Rules for Input Arrays

Value Behavior

mwArrayFormatAsIs Converts arrays according to the default
conversion rules listed in Table B-3, COM
VARIANT to MATLAB Conversion Rules, on
page B-10.

mwArrayFormatMatrix Coerces all arrays into matrices. When an input
argument is encountered that is an array of
Variants (the default behavior is to convert it to a
cell array), the data converter converts this array
to a matrix if each Variant is single valued, and
all elements are homogeneous and of a numeric
type. If this conversion is not possible, creates a
cell array.

mwArrayFormatCell Coerces all arrays into cell arrays. Input scalar or
numeric array arguments are converted to cell
arrays with each cell containing a scalar value for
the respective index.

D Utility Library

D-10

varargin cells, thus applying the InputArrayFormat flag to each cell of a
varargin parameter. The default value is 0.

Property OutputArrayFormat As mwArrayFormat. This property of type
mwArrayFormat controls the formatting of arrays passed as output parameters
to COM Builder class methods. The default value is mwArrayFormatAsIs. The
behaviors indicated by this flag are listed in the next table.

Property OutputArrayIndFlag As Long. This property is similar to the
InputArrayIndFalg property, as it governs the level at which to apply the rule
set by the OutputArrayFormat property for nested arrays. As with the input
case, this flag is automatically incremented by 1 for a varargout parameter.
The default value of this flag is 0.

Property AutoResizeOutput As Boolean. This flag applies to Excel ranges only.
When the target output from a method call is a range of cells in an Excel
worksheet, and the output array size and shape is not known at the time of the

Table D-2: Array Formatting Rules for Output Arrays

Value Behavior

mwArrayFormatAsIs Converts arrays according to the default
conversion rules listed in Table B-2, MATLAB to
COM VARIANT Conversion Rules, on page B-5.

mwArrayFormatMatrix Coerces all arrays into matrices. When an output
cell array argument is encountered (the default
behavior converts it to an array of Variants), the
data converter converts this array to a Variant
that contains a simple numeric array if each cell is
single valued, and all elements are homogeneous
and of a numeric type. If this conversion is not
possible, an array of Variants is created.

mwArrayFormatCell Coerces all output arrays into arrays of Variants.
Output scalar or numeric array arguments are
converted to arrays of Variants, each Variant
containing a scalar value for the respective index.

Utility Library Classes

D-11

call, setting this flag to True instructs the data conversion code to resize each
Excel range to fit the output array. Resizing is applied relative to the upper left
corner of each supplied range. The default value for this flag is False.

Property TransposeOutput As Boolean. Setting this flag to True transposes the
output arguments. This flag is useful when processing an output parameter
from a method call on an COM Builder component, where the MATLAB
function returns outputs as row vectors, and you desire to place the data into
columns. The default value for this flag is False.

Property DataConversionFlags As MWDataConversionFlags
The DataConversionFlags property controls how input variables are processed
when type coercion is needed. The MWDataConversionFlags class is a
noncreatable class accessed through an MWFlags class instance. This class
contains these properties:

• “Property CoerceNumericToType As mwDataType” on page D-11

• “Property InputDateFormat As mwDateFormat” on page D-11

• “PropertyOutputAsDate As Boolean” on page D-13

• “PropertyDateBias As Long” on page D-13

Property CoerceNumericToType As mwDataType. This property converts all numeric
input arguments to one specific MATLAB type. This flag is useful is when
variables maintained within the Visual Basic code are different types, e.g.,
Long, Integer, etc., and all variables passed to the compiled MATLAB code
must be doubles. The default value for this property is mwTypeDefault, which
uses the default rules in “COM VARIANT to MATLAB Conversion Rules” on
page B-10.

Property InputDateFormat As mwDateFormat. This property converts dates passed as
input parameters to method calls on COM Builder classes. The default value is
mwDateFormatNumeric. The behaviors indicated by this flag are shown in
Table D-3, Conversion Rules for Input Dates.

D Utility Library

D-12

Example. This example uses data conversion flags to reshape the output from a
method compiled from a MATLAB function that produces an output vector of
unknown length.

function p = myprimes(n)
if length(n)~=1, error('N must be a scalar'); end
if n < 2, p = zeros(1,0); return, end
p = 1:2:n;
q = length(p);
p(1) = 2;
for k = 3:2:sqrt(n)

if p((k+1)/2)
p(((k*k+1)/2):k:q) = 0;

end
end
p = (p(p>0));

This function produces a row vector of all the prime numbers between 0 and n.
Assume that this function is included in a class named myclass that is included
in a component named mycomponent with a version of 1.0. The subroutine takes
an Excel range and a Double as inputs, and places the generated prime
numbers into the supplied range. The MATLAB function produces a row
vector, although you want the output in column format. It also produces an
unknown number of outputs, and you do not want to truncate any output. To
handle these issues, set the TransposeOutput flag and the AutoResizeOutput
flag to True. In previous examples, the Visual Basic CreateObject function
creates the necessary classes. This example uses an explicit type declaration
for the aClass variable.

Table D-3: Conversion Rules for Input Dates

Value Behavior

mwDateFormatNumeric Convert dates to numeric values as indicated by
the rule listed in Table B-3, COM VARIANT to
MATLAB Conversion Rules, on page B-10.

mwDateFormatString Convert input dates to strings.

Utility Library Classes

D-13

Sub GenPrimes(R As Range, n As Double)
Dim aClass As mycomponent.myclass

On Error GoTo Handle_Error
Set aClass = New mycomponent.myclass
aClass.MWFlags.ArrayFormatFlags.AutoResizeOutput = True
aClass.MWFlags.ArrayFormatFlags.TransposeOutput = True
Call aClass.myprimes(1, R, n)
Exit Sub

Handle_Error:
MsgBox (Err.Description)

End Sub

PropertyOutputAsDate As Boolean. This property processes an output argument as
a date. By default, numeric dates that are output parameters from compiled
MATLAB functions are passed as Doubles that need to be decremented by the
COM date bias (693960) as well as coerced to COM dates. Set this flag to True
to convert all output values of type Double.

PropertyDateBias As Long. This property sets the date bias for performing COM to
MATLAB numeric date conversions. The default value of this property is
693960, representing the difference between the COM Date type and MATLAB
numeric dates. This flag allows existing MATLAB code that already performs
the increment of numeric dates by 693960 to be used unchanged with COM
Builder components. To process dates with such code, set this property to 0.

Sub Clone(ppFlags As MWFlags)
Creates a copy of an MWFlags object.

Parameters.

Return Value. None

Argument Type Description

ppFlags MWFlags Reference to an uninitialized
MWFlags object that receives the
copy.

D Utility Library

D-14

Remarks. Clone allocates a new MWFlags object and creates a deep copy of the
object’s contents. Call this function when a separate object is required instead
of a shared copy of an existing object reference.

Class MWStruct
The MWStruct class passes or receives a Struct type to or from a compiled class
method. This class contains seven properties/methods:

• “Sub Initialize([varDims], [varFieldNames])” on page D-14

• “Property Item([i0], [i1], …, [i31]) As MWField” on page D-15

• “Property NumberOfFields As Long” on page D-18

• “Property NumberOfDims As Long” on page D-18

• “Property Dims As Variant” on page D-18

• “Property FieldNames As Variant” on page D-18

• “Sub Clone(ppStruct As MWStruct)” on page D-19

Sub Initialize([varDims], [varFieldNames])
This method allocates a structure array with a specified number and size of
dimensions and a specified list of field names.

Parameters.

Return Value. None.

Remarks. When created, an MWStruct object has a dimensionality of 1-by-1 and
no fields. The Initialize method dimensions the array and adds a set of
named fields to each element. Each time you call Initialize on the same
object, it is redimensioned. If you do not supply the varDims argument, the
existing number and size of the array’s dimensions unchanged. If you do not
supply the varFieldNames argument, the existing list of fields is not changed.
Calling Initialize with no arguments leaves the array unchanged.

Argument Type Description

varDims Variant Optional array of dimensions

varFieldNames Variant Optional array of field names

Utility Library Classes

D-15

Example. The following Visual Basic code illustrates use of the Initialize
method to dimension struct arrays.

Sub foo ()
Dim x As MWStruct
Dim y As MWStruct

On Error Goto Handle_Error
'Create 1X1 struct arrays with no fields for x, and y
Set x = new MWStruct
Set y = new MWStruct

'Initialize x to be 2X2 with fields "red", "green", and "blue"
Call x.Initialize(Array(2,2), Array("red", "green", "blue"))
'Initialize y to be 1X5 with fields "name" and "age"
Call y.Initialize(5, Array("name", "age"))

'Re-dimension x to be 3X3 with the same field names
Call x.Initialize(Array(3,3))

'Add a new field to y
Call y.Initialize(, Array("name", "age", "salary"))

Exit Sub
Handle_Error:

MsgBox(Err.Description)
End Sub

Property Item([i0], [i1], …, [i31]) As MWField
The Item property is the default property of the MWStruct class. This property
is used to set/get the value of a field at a particular index in the structure array.

D Utility Library

D-16

Parameters.

Remarks. When accessing a named field through this property, you must supply
all dimensions of the requested field as well as the field name. This property
always returns a single field value, and generates a bad index error if you
provide an invalid or incomplete index list. Index arguments have four basic
formats:

• Field name only.

This format may be used only in the case of a 1-by-1 structure array and
returns the named field’s value. For example:
x("red") = 0.2
x("green") = 0.4
x("blue") = 0.6

In this example, the name of the Item property was neglected. This is
possible since the Item property is the default property of the MWStruct class.
In this case the two statements are equivalent:
x.Item("red") = 0.2
x("red") = 0.2

• Single index and field name.

This format accesses array elements through a single subscripting notation. A
single numeric index n followed by the field name returns the named field on
the nth array element, navigating the array linearly in column-major order.
For example, consider a 2-by-2 array of structures with fields "red", "green",
and "blue" stored in a variable x. These two statements are equivalent:

y = x(2, "red")
y = x(2, 1, "red")

Argument Type Description

i0,i1, …, i31 Variant Optional index arguments. Between 0
and 32 index arguments can be entered.
To reference an element of the array,
specify all indexes as well as the field
name.

Utility Library Classes

D-17

• All indices and field name.

This format accesses an array element of an multidimensional array by
specifying n indices. These statements access all four of the elements of the
array in the previous example:

For I From 1 To 2
For J From 1 To 2

r(I, J) = x(I, J, "red")
g(I, J) = x(I, J, "green")
b(I, J) = x(I, J, "blue")

Next
Next

• Array of indices and field name.

This format accesses an array element by passing an array of indices and a
field name. The next example rewrites the previous example using an index
array:

Dim Index(1 To 2) As Integer

For I From 1 To 2
Index(1) = I
For J From 1 To 2

Index(2) = J
r(I, J) = x(Index, "red")
g(I, J) = x(Index, "green")
b(I, J) = x(Index, "blue")

Next
Next

With these four formats, the Item property provides a very flexible indexing
mechanism for structure arrays. Also note:

• You can combine the last two indexing formats. Several index arguments
supplied in either scalar or array format are concatenated to form one index
set. The combining stops when the number of dimensions has been reached.
For example:
Dim Index1(1 To 2) As Integer
Dim Index2(1 To 2) As Integer

D Utility Library

D-18

Index1(1) = 1
Index1(2) = 1
Index2(1) = 3
Index2(2) = 2
x(Index1, Index2, 2, "red") = 0.5

The last statement resolves to:

x(1, 1, 3, 2, 2, "red") = 0.5

• The field name must be the last index in the list. The following statement
produces an error:
y = x("blue", 1, 2)

• Field names are case sensitive.

Property NumberOfFields As Long
The read-only NumberOfFields property returns the number of fields in the
structure array.

Property NumberOfDims As Long
The read-only NumberOfDims property returns the number of dimensions in the
struct array.

Property Dims As Variant
The read-only Dims property returns an array of length NumberOfDims that
contains the size of each dimension of the struct array.

Property FieldNames As Variant
The read-only FieldNames property returns an array of length NumberOfFields
that contains the field names of the elements of the structure array.

Example. The next Visual Basic code sample illustrates how to access a
two-dimensional structure array’s fields when the field names and dimension
sizes are not known in advance.

Sub foo ()
Dim x As MWStruct
Dim Dims as Variant
Dim FieldNames As Variant

Utility Library Classes

D-19

On Error Goto Handle_Error
'
' Call a method that returns an MWStruct in x
'
Dims = x.Dims
FieldNames = x.FieldNames
For I From 1 To Dims(1)

For J From 1 To Dims(2)
For K From 1 To x.NumberOfFields

y = x(I,J,FieldNames(K))
' Do something with y

Next
Next

Next
Exit Sub
Handle_Error:

MsgBox(Err.Description)
End Sub

Sub Clone(ppStruct As MWStruct)
Creates a copy of an MWStruct object.

Parameters.

Return Value. None

Remarks. Clone allocates a new MWStruct object and creates a deep copy of the
object’s contents. Call this function when a separate object is required instead
of a shared copy of an existing object reference.

Argument Type Description

ppStruct MWStruct Reference to an uninitialized
MWStruct object to receive the
copy.

D Utility Library

D-20

Example. The following Visual Basic example illustrates the difference between
assignment and Clone for MWStruct objects.

Sub foo ()
Dim x1 As MWStruct
Dim x2 As MWStruct
Dim x3 As MWStruct

On Error Goto Handle_Error
Set x1 = new MWStruct
x1("name") = "John Smith"
x1("age") = 35

'Set reference of x1 to x2
Set x2 = x1
'Create new object for x3 and copy contents of x1 into it
Call x1.Clone(x3)
'x2's "age" field is also modified 'x3's "age" field unchanged
x1("age") = 50

.

.

.
Exit Sub

Handle_Error:
MsgBox(Err.Description)

End Sub

Class MWField
The MWField class holds a single field reference in an MWStruct object. This
class is noncreatable and contains four properties/methods:

• “Property Name As String” on page D-20

• “Property Value As Variant” on page D-21

• “Property MWFlags As MWFlags” on page D-21

• “Sub Clone(ppField As MWField)” on page D-21

Property Name As String
The name of the field (read only).

Utility Library Classes

D-21

Property Value As Variant
Stores the field’s value (read/write). The Value property is the default property
of the MWField class. The value of a field can be any type that is coercible to a
Variant, as well as object types.

Property MWFlags As MWFlags
Stores a reference to an MWFlags object. This property sets or gets the array
formatting and data conversion flags for a particular field. Each field in a
structure has its own MWFlags property. This property overrides the value of
any flags set on the object whose method’s are called.

Sub Clone(ppField As MWField)
Creates a copy of an MWField object.

Parameters.

Return Value. None.

Remarks. Clone allocates a new MWField object and creates a deep copy of the
object's contents. Call this function when a separate object is required instead
of a shared copy of an existing object reference.

Class MWComplex
The MWComplex class passes or receives a complex numeric array into or from a
compiled class method. This class contains four properties/methods:

• “Property Real As Variant” on page D-22

• “Property Imag As Variant” on page D-22

• “Property MWFlags As MWFlags” on page D-23

• “Sub Clone(ppComplex As MWComplex)” on page D-23

Argument Type Description

ppField MWField Reference to an uninitialized
MWField object to receive the
copy.

D Utility Library

D-22

Property Real As Variant
Stores the real part of a complex array (read/write). The Real property is the
default property of the MWComplex class. The value of this property can be any
type coercible to a Variant, as well as object types, with the restriction that the
underlying array must resolve to a numeric matrix (no cell data allowed). Valid
Visual Basic numeric types for complex arrays include Byte, Integer, Long,
Single, Double, Currency, and Variant/vbDecimal.

Property Imag As Variant
Stores the imaginary part of a complex array (read/write). The Imag property
is optional and can be Empty for a pure real array. If the Imag property is
nonempty and the size and type of the underlying array do not match the size
and type of the Real property’s array, an error results when the object is used
in a method call.

Example. The following Visual Basic code creates a complex array with the
following entries:

x = [1+i 1+2i
2+i 2+2i]

Sub foo()
Dim x As MWComplex
Dim rval(1 To 2, 1 To 2) As Double
Dim ival(1 To 2, 1 To 2) As Double

On Error Goto Handle_Error
For I = 1 To 2

For J = 1 To 2
rval(I,J) = I
ival(I,J) = J

Next
Next
Set x = new MWComplex
x.Real = rval
x.Imag = ival

.

.

.
Exit Sub

Handle_Error:

Utility Library Classes

D-23

MsgBox(Err.Description)
End Sub

Property MWFlags As MWFlags
Stores a reference to an MWFlags object. This property sets or gets the array
formatting and data conversion flags for a particular complex array. Each
MWComplex object has its own MWFlags property. This property overrides the
value of any flags set on the object whose method’s are called.

Sub Clone(ppComplex As MWComplex)
Creates a copy of an MWComplex object.

Parameters.

Return Value. None

Remarks. Clone allocates a new MWComplex object and creates a deep copy of the
object’s contents. Call this function when a separate object is required instead
of a shared copy of an existing object reference.

Class MWSparse
The MWSparse class passes or receives a two-dimensional sparse numeric array
into or from a compiled class method. This class has seven properties/methods:

• “Property NumRows As Long” on page D-24

• “Property NumColumns As Long” on page D-24

• “Property RowIndex As Variant” on page D-24

• “Property ColumnIndex As Variant” on page D-24

• “Property Array As Variant” on page D-24

• “Property MWFlags As MWFlags” on page D-24

• “Sub Clone(ppSparse As MWSparse)” on page D-25

Argument Type Description

ppComplex MWComplex Reference to an uninitialized
MWComplex object to receive the
copy.

D Utility Library

D-24

Property NumRows As Long
Stores the row dimension for the array. The value of NumRows must be
nonnegative. If the value is zero, the row index is taken from the maximum of
the values in the RowIndex array.

Property NumColumns As Long
Stores the column dimension for the array. The value of NumColumns must be
nonnegative. If the value is zero, the row index is taken from the maximum of
the values in the ColumnIndex array.

Property RowIndex As Variant
Stores the array of row indices of the nonzero elements of the array. The value
of this property can be any type coercible to a Variant, as well as object types,
with the restriction that the underlying array must resolve to or be coercible to
a numeric matrix of type Long. If the value of NumRows is nonzero and any row
index is greater than NumRows, a bad-index error occurs. An error also results
if the number of elements in the RowIndex array does not match the number of
elements in the Array property’s underlying array.

Property ColumnIndex As Variant
Stores the array of column indices of the nonzero elements of the array. The
value of this property can be any type coercible to a Variant, as well as object
types, with the restriction that the underlying array must resolve to or be
coercible to a numeric matrix of type Long. If the value of NumColumns is
nonzero and any column index is greater than NumColumns, a bad-index error
occurs. An error also results if the number of elements in the ColumnIndex
array does not match the number of elements in the Array property’s
underlying array.

Property Array As Variant
Stores the nonzero array values of the sparse array. The value of this property
can be any type coercible to a Variant, as well as object types, with the
restriction that the underlying array must resolve to or be coercible to a
numeric matrix of type Double or Boolean.

Property MWFlags As MWFlags
Stores a reference to an MWFlags object. This property sets or gets the array
formatting and data conversion flags for a particular sparse array. Each

Utility Library Classes

D-25

MWSparse object has its own MWFlags property. This property overrides the
value of the any flags set on the object whose method’s are called.

Sub Clone(ppSparse As MWSparse)
Creates a copy of an MWSparse object.

Parameters.

Return Value. None.

Remarks. Clone allocates a new MWSparse object and creates a deep copy of the
object’s contents. Call this function when a separate object is required instead
of a shared copy of an existing object reference.

Example. The following Visual Basic sample creates a 5-by-5 tridiagonal sparse
array with the following entries:

X = [2 -1 0 0 0
-1 2 -1 0 0
0 -1 2 -1 0
0 0 -1 2 -1
0 0 0 -1 2]

Sub foo()
Dim x As MWSparse
Dim rows(1 To 13) As Long
Dim cols(1 To 13) As Long
Dim vals(1 To 13) As Double
Dim I As Long, K As Long

On Error GoTo Handle_Error
K = 1
For I = 1 To 4

rows(K) = I

Argument Type Description

ppSparse MWSparse Reference to an uninitialized
MWSparse object to receive the
copy.

D Utility Library

D-26

cols(K) = I + 1
vals(K) = -1
K = K + 1
rows(K) = I
cols(K) = I
vals(K) = 2
K = K + 1
rows(K) = I + 1
cols(K) = I
vals(K) = -1
K = K + 1

Next
rows(K) = 5
cols(K) = 5
vals(K) = 2
Set x = New MWSparse
x.NumRows = 5
x.NumColumns = 5
x.RowIndex = rows
x.ColumnIndex = cols
x.Array = vals

.

.

.
Exit Sub

Handle_Error:
MsgBox (Err.Description)

End Sub

Class MWArg
The MWArg class passes a generic argument into a compiled class method. This
class passes an argument for which the data conversion flags are changed for
that one argument. This class has three properties/methods:

• “Property Value As Variant” on page D-27

• “Property MWFlags As MWFlags” on page D-27

• “Sub Clone(ppArg As MWArg)” on page D-27

Utility Library Classes

D-27

Property Value As Variant
The Value property stores the actual argument to pass. Any type that can be
passed to a compiled method is valid for this property.

Property MWFlags As MWFlags
Stores a reference to an MWFlags object. This property sets or gets the array
formatting and data conversion flags for a particular argument. Each MWArg
object has its own MWFlags property. This property overrides the value of the
any flags set on the object whose method’s are called.

Sub Clone(ppArg As MWArg)
Creates a copy of an MWArg object.

Parameters.

Return Value. None.

Remarks. Clone allocates a new MWArg object and creates a deep copy of the
object’s contents. Call this function when a separate object is required instead
of a shared copy of an existing object reference.

Argument Type Description

ppArg MWArg Reference to an uninitialized
MWArg object to receive the copy.

D Utility Library

D-28

Enumerations
The MATLAB COM Builder Utility Library provides three enumerations (sets
of constants):

• “Enum mwArrayFormat” on page D-28

• “Enum mwDataType” on page D-28

• “Enum mwDateFormat” on page D-29

Enum mwArrayFormat
The mwArrayFormat enumeration is a set of constants that denote an array
formatting rule for data conversion. Table D-4 lists the members of this
enumeration.

Enum mwDataType
The mwDataType enumeration is a set of constants that denote a MATLAB
numeric type. Table D-5 lists the members of this enumeration.

Table D-4: mwArrayFormat Values

Constant Numeric
Value

Description

mwArrayFormatAsIs 0 Do not reformat the array.

mwArrayFormatMatrix 1 Format the array as a matrix.

mwArrayFormatCell 2 Format the array as a cell array.

Table D-5: mwDataType Values

Constant Numeric
Value

MATLAB Type

mwTypeDefault 0 N/A

mwTypeLogical 3 logical

Enumerations

D-29

Enum mwDateFormat
The mwDateFormat enumeration is a set of constants that denote a formatting
rule for dates. Table D-6 lists the members of this enumeration.

mwTypeChar 4 char

mwTypeDouble 6 double

mwTypeSingle 7 single

mwTypeInt8 8 int8

mwTypeUint8 9 uint8

mwTypeInt16 10 int16

mwTypeUint16 11 uint16

mwTypeInt32 12 int32

mwTypeUint32 13 uint32

Table D-6: mwDateFormat Values

Constant Numeric
Value

Description

mwDateFormatNumeric 0 Format dates as numeric
values.

mwDateFormatString 1 Format dates as strings.

Table D-5: mwDataType Values (Continued)

Constant Numeric
Value

MATLAB Type

D Utility Library

D-30

E

Troubleshooting

E Troubleshooting

E-2

This section provides a table showing errors you may encounter using
MATLAB COM Builder, probable causes for these errors, and suggested
solutions.

Table E-1: MATLAB COM Builder Errors and Suggested Solutions

Message Probable Cause Suggested Solution

MBUILD.BAT: Error: The chosen
compiler does not support
building COM objects.

The chosen compiler
does not support
building COM objects.

Rerun mbuild -setup and
choose a supported compiler.

Error in
component_name.class_name.1_0:
Error getting data conversion
flags.

Usually caused by
mwcomutil.dll not
being registered.

Open a DOS window, change
directories to
<matlab>\bin\win32
(<matlab> represents the
location of MATLAB on your
system), and run the command
mwregsvr mwcomutil.dll.

Error in VBAProject: ActiveX
component can't create object.

1. Project DLL is not
registered.

2. An incompatible
MATLAB DLL exists
somewhere on the
system path.

If the DLL is not registered,
open a DOS window, change
directories to
<projectdir>\distrib
(<projectdir> represents the
location of your project files),
and run the command:
mwregsvr <projectdll>.dll.

Error in VBAProject: Automation
error The specified module
could not be found.

This usually occurs if
MATLAB is not on the
system path.

Place <matlab>\bin\win32 on
your path.

E-3

LoadLibrary("component_name_1_
0.dll") failed - The specified
module could not be found.

You may get this error
message while
registering the project
DLL from the DOS
prompt. This usually
occurs if MATLAB is
not on the system path.

Place <matlab>\bin\win32 on
your path.

Cannot recompile the M file
xxxx because it is already in
the library libmmfile.mlib.

The name you have
chosen for your M-file
duplicates the name of
an M-file already in the
library of precompiled
M-files.

Rename the M-file, choosing a
name that does not duplicate
the name of an M-file already
in the library of precompiled
M-files.

Table E-1: MATLAB COM Builder Errors and Suggested Solutions (Continued)

Message Probable Cause Suggested Solution

E Troubleshooting

E-4

I-1

Index

Symbols
%#event pragma 3-6

A
access 3-2
array formatting flags 3-18

B
background required ix

C
capabilities A-2
class 1-2
class method

calling 3-10
Class MWFlags D-8
Class MWUtil D-3
class name 1-2
class properties

properties, class 3-3
COM

defined 1-2
COM class

producing A-7
COM VARIANT B-2
comltool

purpose 2-2
compilers x
component

access 3-2
component name 1-4
Component Object Model 1-2
componentinfo function 5-2
comtool function 5-4

CreateObject function 3-10

D
data conversion flags 3-18
data conversion rules B-2

E
Enumeration

mwArrayFormat D-28
mwDataType D-28
mwDateFormat D-29

enumerations D-28
error processing A-2
errors

Excel Builder E-2
event function 3-6

F
flags

array formatting 3-18
data conversion 3-18

G
global variables 3-3
Globally Unique Identifier

definition A-5
Globally Unique Identifier (GUID) C-3
GUID

definition A-5
GUID (Globally Unique Identifier) C-3

Index

I-2

I
IDL Mapping A-8
input command x

L
limitations x

M
mbuild x
mccsavepath x
methods 1-2
missing parameter D-4
MWFlags class D-8
mwregsvr utility C-3
MWUtil class D-3

N
New operator 3-10

O
outgoing interface 3-6

P
project 1-2

creating 1-3
settings 2-5

project version 1-4

R
requirements

system x
restrictions x

S
self-registering component C-3
system requirements x

T
troubleshooting E-2
type library C-3
typographical conventions (table) xii

U
unregistering components C-3
utility library D-3

V
VARIANT variable B-2
version number 1-2, C-5
versioning 1-2
versioning rules C-5
Visual Basic Mapping A-9

	Preface
	What Is MATLAB COM Builder?
	Required Background
	Requirements for MATLAB COM Builder
	System Requirements
	Compiler Requirements
	Limitations and Restrictions

	Related Products
	Typographical Conventions

	Overview
	Building a Deployable Application
	Elements of a COM Builder Project
	Creating a Project
	Managing M-Files and MEX-Files
	Building a Project
	Packaging and Distributing the Component

	Graphical User Interface
	Graphical User Interface Menus
	File Menu
	Project Menu
	Build Menu
	Component Menu
	Help Menu

	Project Settings
	Component Information

	Programming with COM Builder Components
	Overview
	Adding Class Properties to COM Builder Objects
	Adding Events to COM Builder Objects
	Creating an Instance of a Class
	CreateObject Function
	Visual Basic New Operator

	Calling the Methods of a Class Instance
	Processing varargin and varargout Arguments
	Handling Errors During a Method Call
	Modifying Flags
	Array Formatting Flags
	Data Conversion Flags

	Usage Examples
	Magic Square Example
	Creating the M-file
	Creating the Project
	Building the Project
	Creating the Visual Basic Project
	Creating the User Interface
	Creating the Executable
	Testing the Application
	Packaging the Component

	Spectral Analysis Example
	Building the Component
	Integrating the Component with Visual Basic for Applications
	Creating The Visual Basic Form
	Adding The Spectral Analysis Menu Item to Excel
	Saving the Add-in
	Testing The Add-in
	Package the Component

	Function Reference
	Producing a COM Object from MATLAB
	Capabilities
	Calling Conventions
	Producing a COM Class
	IDL Mapping
	Visual Basic Mapping

	Data Conversion
	Data Conversion Rules
	Array Formatting Flags
	Data Conversion Flags

	Registration and Versioning
	Overview
	Component Registration
	Self-Registering Components
	Globally Unique Identifiers

	Versioning
	Obtaining Registry Information

	Utility Library
	Introduction
	Utility Library Classes
	Class MWUtil
	Class MWFlags
	Class MWStruct
	Class MWField
	Class MWComplex
	Class MWSparse
	Class MWArg

	Enumerations
	Enum mwArrayFormat
	Enum mwDataType
	Enum mwDateFormat

	Troubleshooting
	Index

